• Title/Summary/Keyword: Combustion Measurement

Search Result 543, Processing Time 0.021 seconds

Experimental study on TDLAS temperature profile measurement using temperature binning method (TDLAS에서 temperature binning 방법을 이용한 온도 측정에 대한 실험적 연구)

  • Yoon, Sungwoon;Kim, Sewon;Shin, Myungchul;Lee, Changyeop
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.27-28
    • /
    • 2012
  • Tunable diode laser absorption spectroscopy(TDLAS) measurement techniques for several gases densities and temperatures have been applied in industrial combustion systems. Accurate measurement of temperature profile is very important, especially in power plants and heating furnaces. So profile fitting and temperature binning methods are new issue for accurate measurement of temperature in laser gas sensing. Temperature binning method is applied in this study for the measurement of temperature profile using tube furnace with three temperature zones. In this study the temperature profiles of tube furnace is accurately measured within 5% error, and this technique is proved to be very promising in the field of temperature profile measurement.

  • PDF

Point Cloud Measurement Using Improved Variance Focus Measure Operator

  • Yeni Li;Liang Hou;Yun Chen;Shaoqi Huang
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.170-182
    • /
    • 2024
  • The dimensional accuracy and consistency of a dual oil circuit centrifugal fuel nozzle are important for fuel distribution and combustion efficiency in an engine combustion chamber. A point cloud measurement method was proposed to solve the geometric accuracy detection problem for the fuel nozzle. An improved variance focus measure operator was used to extract the depth point cloud. Compared with other traditional sharpness evaluation functions, the improved operator can generate the best evaluation curve, and has the least noise and the shortest calculation time. The experimental results of point cloud slicing measurement show that the best window size is 24 × 24 pixels. In the height measurement experiment of the standard sample block, the relative error is 2.32%, and in the fuel nozzle cone angle measurement experiment, the relative error is 2.46%, which can meet the high precision requirements of a dual oil circuit centrifugal fuel nozzle.

An Experimental Study on the Measurement of Instantaneous Surface Temperature and Heat Flux on the Cylinder Head Surface of DI Diesel Engine (DI 디젤기관 실린더 헤드표면의 순간온도 및 열유속 측정에 관한 실험적 연구)

  • 이재순;김기태;이현구;강태경;우종헌;김수성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.178-187
    • /
    • 1997
  • For the experimental measurement of heat flux of DI diesel engine combustion chamber, the instantaneous temperature probes and data acquisition system were developed. By the analysis of measured temperatures at the cylinder head, the temperature at the point 3 which is located between intake and exhaust valve was higher than that of the other points. Temperatures at the point located mear the exhaust valve were higher than those of intake valve. The instantaneous and mean temperature at the cylinder head increases proportionally to the increase of the engine speed, while the temperature swing varies inversely. Temperature swings have influence on the maximum heat flux values from gas into head surface. It has been verified that these probes and data acquisition system perform well by the comparison of the trend of instantaneous temperature variation with that of measured combustion chamber pressure variation with respect to crank angle. It is presumed that these probes could be used in the measurement of other parts of combustion chamber as piston, cylinder wall etc. for the future study.

  • PDF

Flame Structure of Moderate Turbulent Combustion in Opposed Impinging Jet Combustor (대항분출 연소기의 난류화염 구조)

  • Cho, Yong-Jin;Yoon, Young-Bin;Lee, Chang-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 2002.06a
    • /
    • pp.46-51
    • /
    • 2002
  • The measurement of velocity and stain rate field has been conducted in opposed impinging jet combustion. When a smaller diameter (5mm) orifice of pre-chamber was used, previous studies had reported that the combustion phase showed a shift from weak turbulent combustion to moderate turbulent combustion in the modified Borghi Diagram. In the case with smaller orifice diameter (5mm), NOx emission was substantially reduced by a factor 1/2 while the combustion pressure remains at the same as that in the conventional combustion. Hence, in this study, the experiment setup using PIV technique was designed to identify the relation of the strain rate distribution and NOx reduction associated with moderate turbulent combustion.

  • PDF

Research and Development Status of Combustion Chamber of Liquid Rocket Engine for KSLV-II (한국형발사체 액체로켓엔진 연소기 연구 개발 현황)

  • Han, Yeoung-Min;Lee, Kwang-Jin;Kim, Jong-Gyu
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.291-294
    • /
    • 2012
  • The research and development status of combustion chamber of liquid rocjet engine for Korea Space Launch Vehicle(KSLV-II) are briefly described. The cold and hot firing tests of uni-element injector, the performance/heat flux measurement/hot firing tests of subscale combustion chamber and the performance/stability rating/regenerative cooling/hot fire tests of 30ton-class combustion chamber were successfully performed. Based on these results, the research and development of combustion chamber for 75ton-class liquid rocket engine are underway.

  • PDF

Quantitative Acetone PLIF Measurement of Fuel Distribution in a Gas Turbine Combustor Burner (아세톤 PLIF를 이용한 가스터빈 연소기 버너 출구 연료분포의 정량적 측정)

  • Jeon, Woo-Jin;Kim, Hyung-Mo;Lee, Kang-Yeop;Yang, Su-Seok
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.4
    • /
    • pp.43-52
    • /
    • 2010
  • A non-intrusive measurement, Planar Laser Induced Fluorescence was employed to visualize and measure the fuel distribution of the non-reacting field at the burner exit of gas turbine combustor. Measurement techniques, image processing method and quantification procedure were presented. Also, concentration measurement with gas analyzer was carried out to verify the propriety of PLIF result. The PLIF result coincides well with gas analyzer measurement result. PLIF test result for several other conditions are mentioned as well.

A Study on Comparisons Between Combustion Temperatures Calculated by Two-Region Model and Measured by Two-Color Method in Premixed Constant-Volume Combustion (정적 예혼합기 연소에 있어서 2영역 모델 및 2색법에 의한 연소온도 비교에 관한 연구)

  • S.K.Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.300-310
    • /
    • 1999
  • A constant-volume combustion chamber is developed to measure the burnt gas temperature over the wide ranges of equivalence ratio from 1.5 to 2.7 and pressure from 0.1 to 2.7 and pressure from 0.1 to 6 MPa by two-color method. The combustion temperature is also calculated by the conventional two-region model. The premixed fuel rich propane-oxygen-inert gas mixtures under high pressures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree intervals. The eight converging flames compress the end gases to high pressures. The transmissiv-ity in the chamber center during the final stage of combustion at the highest pressure is measured by in situ laser extinction method. Comparisons are made with the combustion temperatures between two-color method and two-region model. It is found that the burnt gas temperature mea-sured by two-color method is higher than that calculated by two-region model because of being the negative temperature gradient on the calculation and the temperature distribution of light path-length on the measurement and the burnt gas temperature for the turbulent combustion is higher than that of the laminar combustion under the same conditions because the heat loss for turbulent combustion is lower due to the shorter combustion period.

  • PDF

An Investigation of Combustion Emission Characteristics of Kerosene Fan Heater with Addition of Water Droplets by Ultrasonic Atomizer (초음파 수첨가 연소에 의한 석유 홴 히터의 배기가스 특성 고찰)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.44-53
    • /
    • 1999
  • This study is concerned with the emission characteristics of kerosene fan heater, which is burned with kerosene and water droplets simultaneously in the burner, in order to prohibit the emissions of harmful exhaust gas and reduce smell caused by incomplete combustion, and the addition of water droplets to the conventional kerosene fan heater was performed by ultrasonic atomizer. For the investigation of this study, the measurement of exhaust gas components and exhaust gas temperature was carried out by using an automatic combustion gas analyser and $NO_x$ analyser, and the measurement of consumption weight of oil and water was obtained by using electric digital balance. Consequently, according as the water percent weight ratio of about $21{\sim}23%$ was supplied for this study, it was found that the combustion-generated $NO_x$ and CO emissions were reduced very largely, but the emissions of $O_2\;and\;CO_2$ and the temperature of exhaust gas were not changed.

  • PDF

Brief Note on Acoustic Impedance Characteristics at Flow Boundaries (경계에서의 음향 임피던스 특성에 대한 연구 고찰)

  • Seo, Seonghyeon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.103-109
    • /
    • 2017
  • An increase in acoustic energy in a combustion chamber coupled with heat fluctuations from flame results in the occurrence of combustion instability. The assessment of combustion stability requires the prediction of acoustic energy variation by understanding the acoustical characteristics of flow boundaries in a combustion chamber. The present paper discusses about the characteristics of acoustic impedances at boundaries in terms of Strouhal number and summarizes theoretical analyses on the acoustic characteristics of injector-head-like configurations. Also, the details of the two-microphone measurement technique have been presented.

Preliminary design on the thrust measurement system for vertical firing test stand of the liquid rocket engine combustion chamber (액체로켓엔진 연소기 수직형 연소시험설비의 추력측정시스템 기본설계)

  • Kim, Ji-Hoon;Kim, Seung-Han;Lee, Kwang-Jin;Han, Yeoung-Min;Park, Bong-Kyo;Hu, Sang-Bum
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.574-577
    • /
    • 2012
  • Thrust measuring is one of the crucial factor to decide the performance of a liquid rocket engine when the engine development test, especially for the combustion chamber, is implemented. Calculating the thrust from a combustion pressure is used when direct measuring the thrust is impossible, but direct measuring the thrust is necessary and various methods for doing it more precisely should be considered. This paper introduces the preliminary design concept about the new thrust measurement system for the vertical firing test stand, which is introduced domestically for the first time, of a liquid rocket engine combustion chamber.

  • PDF