• Title/Summary/Keyword: Combustion Field

Search Result 537, Processing Time 0.023 seconds

Field Scale Study for Energy Efficiency Improvement of Crematory System by the Shape Optimization of Combustion Chamber (화장로 형상 최적화를 통한 에너지효율개선을 위한 실증연구)

  • Won, Yong-Tae;Lee, Seung-Mok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.546-555
    • /
    • 2019
  • The purpose of this study was to improve the performance of the bogie-type crematory, which is the mainstream of domestic crematory equipment. A field scale technology was investigated via increasing the volume by changing the shape of the furnace and reducing the cremation time and saving the energy usage through the optimization of burner combustion control. First, the optimized structural design through thermal flow analysis increases the volume of the main combustion chamber by about 70%, which increases the residence time of the combustion flue gas. A designed pilot crematory was then installed and the combustion behavior was tested under various operating conditions and the optimum operating plan was derived from for each furnace shape. Based on the results, the practically applicable crematory was designed and installed at Y crematorium in the P City. Optimal combustion conditions could be derived through operating the demonstration crematory furnace. The crematory time and fuel consumption could be minimized by increasing the energy efficiency by increasing the residence time of high temperature combustion flue gas. In other words, the crematory time and fuel consumption were 38 min and $21.8Nm^3$, respectively which were shortened by 44.1 and 54.4% lower than that of the existing crematory, respectively.

Experimental Study on Downwardly Spreading Flame over Inclined Polyethylene-insulated Electrical Wire with Applied AC Electric Fields (교류전기장이 인가된 폴리에틸렌으로 피복된 기울어진 전선을 통해 하향으로 전파하는 화염에 대한 실험적 연구)

  • Lim, Seung Jae;Park, Jeong;Kim, Min Kuk;Chung, Suk Ho;Osamu, Fujita
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • An experimental study on downwardly spreading flame over slanted electrical wire, which is insulated by Polyethylene (PE), was conducted with applied AC electric fields. The result showed that the flame spread rate decreased initially with increase in inclination angle of wire and then became nearly constant. The flame shape was modified significantly with applied AC electric field due to the effect of ionic wind. Such a variation in flame spread rate could be explained by a thermal balance mechanism, depending on flame shape and slanted direction of flame. Extinction of the spreading flame was not related to angle of inclination, and was described well by a functional dependency upon the frequency and voltage at extinction.

A Modeling Study of Local Equivalence Ratio Fluctuation in Imperfectly Premixed Turbulent Flames

  • Moon, Hee-Jang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1479-1489
    • /
    • 2004
  • The effect of fluctuation of Equivalence Ratio (ER) in a turbulent reactive field has been studied in order to check the global combustion characteristics induced by the local fluctuation. When the flow is premixed on a large scale, closer examination on a small scale reveals that local fluctuations of ER exist in an imperfectly premixed mixture, and that these fluctuations must be considered to correctly estimate the mean reaction rate. The fluctuation effect is analyzed with DNS by considering the joint PDF of reactive scalar and ER, followed by modeling study where an extension of stochastic mixing models accounting for the ER fluctuation is reviewed and tested. It was found that models prediction capability as well as its potential is in favor to this case accounting the local ER fluctuation. However, the effect of local fluctuation did not show any notable changes on the mean global characteristics of combustion when statistical independence between the reactive scalar and ER field is imposed, though it greatly influenced the joint PDF distribution. The importance of taking into account the statistical dependency between ER and combustible at the initial phase is demonstrated by testing the modeled reaction rate.

Experimental Study of Thermo-Flow Field in a Model Gas Turbine Combustor with Various Swirl Conditions (스월변화에 따른 모형 가스터빈 연소기의 열유동장의 실험적 연구)

  • Ryu, Song-Youl;Koo, Ja-Ye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.70-76
    • /
    • 2002
  • Characteristics of kerosine spray combustion were investigated at various swirl condition. PDPA(Phase Doppler Particle Analysis) was used to measure the droplet sizes and velocities. R-type(Platinum vs. Platinum-13%rhodium) thermocouple was used to measure the temperature of combustion flow field inside model combustor. A visualization of spray and flame was performed with still camera. As swirl number increases due to increase of swirl vane angle, the spray and the flame were developed to radial direction rapidly. When swirl number is small, the configuration of flame is cone type, but swirl number is large, the configuration of flame is cylindrical type due to enhanced mixing by the transport of swirl momentum.

The Characteristics of the Flow and Combustion in a Turbulent Non-Premixed Flat Flame (난류 비예혼합 평면화염의 유동과 연소 특성)

  • Kwark, Ji-Hyun;Jung, Yong-Ki;Jun, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.447-457
    • /
    • 2003
  • An experiment in a turbulent non-premixed flat flame was carried out in order to investigate the effect of swirl number on the flow and combustion characteristics. First. stream lines and velocity distribution in the flow field were obtained using PIV method. In contrast with the axial flow without swirl, highly swirled air induced stream lines along the burner tile. and backward flow was caused by recirculation in the center zone of the flow field. In the combustion. the flame with swirled air also became flat and stable along the burner tile with increment of the swirl number. Flame structure by measuring OH and CH radicals intensity and by calculating Damkohler number(Da) and turbulence Reynolds number(Re$_{T}$) was examined. It appeared to be comprised in the wrinkled laminar-flame regime. Backward flow by recirculation of the burned gas decreased the flame temperature and emissions concentrations as NO and CO. Consequently, the stable flat flame with low NO concentration was achieved.d.

Dynamic Characteristics of Transverse Fuel Injection and Combustion Flow-Field inside a Scramjet Engine Combustor

  • Park, J-Y;V. Yang;F. Ma
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.62-68
    • /
    • 2004
  • A comprehensive numerical analysis has been carried out for both non-reacting and reacting flows in a scramjet engine combustor with and without a cavity. The theoretical formulation treats the complete conservation equations of chemically reacting flows with finite-rate chemistry of hydrogen-air. Turbulence closure is achieved by means of a k-$\omega$ two-equation model. The governing equations are discretized using a MUSCL-type TVD scheme, and temporally integrated by a second-order accurate implicit scheme. Transverse injection of hydrogen is considered over a broad range of injection pressure. The corresponding equivalence ratio of the overall fuel/air mixture ranges from 0.167 to 0.50. The work features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous studies. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the .underlying physical mechanisms. Much of the flow unsteadiness is related not only to the cavity, but also to the intrinsic unsteadiness in the flow-field. The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The roles of the cavity, injection pressure, and heat release in determining the flow dynamics are examined systematically.

  • PDF

An Experimental Study on the Combustion Instability Evaluation by Using DMD (DMD 기법을 적용한 모형 가스터빈의 연소불안정성 평가에 관한 실험적 연구)

  • Son, Jinwoo;Sohn, Chae Hoon;Yoon, Jisu;Yoon, Youngbin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.59-60
    • /
    • 2017
  • Combustion instability of gas turbine is performed by adopting dynamic mode decomposition (DMD). The unstable frequencies are calculated and compared with FFT results. The damping coefficient derived from the DMD technique and FFT results were compared and analyzed. OH radical is measured by experimental work and fluctuation field is extracted and FTF was calculated at various points with DMD. The gains of FTF are changed depending on the extraction position of the heat release fluctuation field.

  • PDF

Effect of AC electric fields on Free Jet Flow in a Laminar (층류 자유제트유동에 인가된 교류전기장의 영향)

  • Kim, Gyeong Taek;Lee, Won June;Cha, Min Suk;Park, Jeong;Chung, Suk Ho;Kwon, Oh Boong;Kim, Min Kuk;Lee, Sang Min;Yun, Jin Han;Keel, Sang In
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.79-81
    • /
    • 2015
  • The experimental study on gasesous laminar free-jet flow was investigated by applying high voltage alternating current (AC) to the nozzle. The jet flows were affedcted significatly by AC electric fields particularly at high voltages for applied frequencies less than 80 Hz, while those were not responded to further increased frequencies. Under certain AC conditions of applied voltgae and frequency, the laminar gaseous fuel stem was broken down at an axial distance and subsequently separtaed into some parts. The velocity fields in jet flows interactiong with applied electric fields were compared with those without having electric field. Interaction of applying electric fields with laminar free jet flow was discussed in detail, and the possible mechanism was also explained.

  • PDF

LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor (모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Hyun-Yong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Experimental Investigation on Flame Structure and Emission Characteristics in a Lean Premixed Model Gas Turbine Combustor (희박 예혼합 모형 가스터빈 연소기의 화염구조와 배기특성에 관한 실험적 연구)

  • Lee, Jong-Ho;Kim, Dae-Hyun;Jeon, Hung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.425-432
    • /
    • 2004
  • The objective of this study is a qualitative comparison between line-integrated OH chemiluminescence(OH$\^$*/) image and its Abel inverted image to investigate the flame structure at different phase of the oscillating pressure field. PIV(Particle Image Velocimetry) measurements were conducted under non-reacting conditions to see the global flow structure and NOx emission was measured to investigate the effect of fuel-air premixing on combustion instability and emission characteristics. Experiments were carried out in an atmospheric pressure, laboratory-scale dump combustor operating on natural gas. Combustion instabilities in present study exhibited a longitudinal mode with a dominant frequency of ∼341.8㎐, which corresponded to a quarter wave mode of combustor. Heat release and pressure waves were in-phase when instability occurred. Results gave an insight about the location where the strong coherence of pressure and heat release existed. Also an additional information on active control to suppress the combustion instabilities was obtained. For lean premixed combustion, strong correlation between OH$\^$*/ and NOx emissions was expected largely due to the exponential dependence of thermal NOx mechanism on flame temperature.