• Title/Summary/Keyword: Combustion Emission

Search Result 1,506, Processing Time 0.023 seconds

Combustion Characteristics in a Constant Volume Combustion Chamber with Sub-Chamber (II) Effect of Combustion Promotion with Configuration Change of the Critical Passagehole (부실식 정적연소실내 연소특성에 관한 연구 (II) 임계연락공의 형상변화에 따른 연소촉진효과)

  • 김봉석;권철홍;류정인
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2611-2623
    • /
    • 1993
  • To construct the design back data for a lean-burn gas engine, we investigated the combustion characteristics in the main chamber using a constant volume combustion chamber with subchamber. The combustion characteristics with configuration change of the critical passageholes have been studied by taking pressure data, schlieren photograph, ion current and light emission signal of flame. Heat release rate with various critical passageholes also have been analysed by using the combustion model of a prechamber diesel engine. It was found that combustion characteristics in the main combustion chamber were greatly influenced by the geometric configurations of critical passagehole.

Effects of SO2 Mixture in Inlet Air on Combustion and Exhaust Emission Characteristic in diesel engine (디젤엔진에 있어서 흡기 중에 SO2혼입이 연소 및 배기배출물 특성에 미치는 영향)

  • Yoo, Dong-Hoon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.64-69
    • /
    • 2015
  • Marine diesel engines with high thermal efficiency and fuel diversity used for propulsive power have been taking charge of important position on marine transport. However, marine environment has recently focused on emissions such as nitrogen oxide and sulfur oxide which is generated from combustion of low grade fuels. EGR(Exhaust gas recirculation) system is one of effective methods to reduce the nitrogen oxide emission from marine diesel engines. In general, it is considered that recirculating gas influences fuel combustion and emissions in diesel engines. However, along with positive effects of EGR, the EGR system using fuels of including high sulfur concentration should be considered about re-combustion and activation of sulfur dioxide in recirculating gas. Therefore, in experimental study, an author investigates effects of sulfur dioxide mixture concentration in intake air on combustion and exhaust emission characteristics in a direct injection diesel engine. In results, change of sulfur dioxide concentrations in intake air had negligible impact on combustion chamber pressure, rate of heat release and emissions compared with effects of oxygen decreasing and carbon dioxide increasing of EGR.

Characteristics for Effects of Co2 Addition to Oxygen-Enriched Combustion (산소부화연소에서 Co2 첨가에 대한 연소 특성)

  • Kim, Han-Seok;Kim, Ho-Keun;Ahn, Kook-Young;Kim, Yong-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.9-15
    • /
    • 2004
  • $CO_2$ is a well-known green house gas as well as the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. Because its adiabatic flame temperature is relatively too high, existing facilities must be changed or the flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were investigated experimentally for the various oxygen-enriched ratios(OER) by the addition of $CO_2$, under constant $O_2$ flow rate. Results showed that the reaction zone was quenched and broadened as the addition of $CO_2$ was increased. The emission of NOx in flue gas was decreased as decreasing temperature in reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone was increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0%, but the composition of CO was decreased by quenching effect at OER=50% and 100%.

The study of combustion characteristics and emissions with the variation of design factor on slit gas burner (슬릿버너에서 형상변화가 연소특성 및 배기배출물에 미치는 영향)

  • Kim, Tae-Woo;Cho, Seung-Wan;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.314-319
    • /
    • 2005
  • In this study, the combustion characteristics were investigated with the variation of design factors on multiple slit gas burner. The design factors consist of slit height, width, spacing, and inner length. The combustion characteristics were made analysis of the CO emission and NOx emission by using CO analyzer and NOx analyzer. The lower perimeter to area and the narrow spacing extends the lift-flame limit. The CO emission increases with the increasing perimeter to area ratio at the same condition. The NOx emission is found to be less significant with the port perimeter to area ratio. The flame interference might highly depend on the spacing and port perimeter to area ratio, and it also affects the burner performance.

  • PDF

Numerical Study of Flame Structure and Emission Characteristics in Metal Fiber Burners (메탈화이버 버너의 화염구조 및 공해물질 배출 특성)

  • Jeong, Jun-Young;Kim, Yong-Mo
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.3
    • /
    • pp.27-32
    • /
    • 2011
  • This study has numerically investigated the flame structure and emission characteristics in the metal fiber burner. The one-dimensional premixed flame approach has been adopted to simulate the combustion processes of the metal fiber burner. Numerical results indicate that the present approach is capable of predicting the essential combustion characteristics of the metal fiber burner. Based on numerical results, the detailed discussion has been made for the effects of equivalence ratio and thermal load on the precise flame structure and the pollutant emission in the metal fiber burner.

Effect of the Combustor Geometries on Combustion and NOx Emission Characteristics in a Lean Premixed Micro Gas Turbine (희박예혼합 마이크로 가스터빈 연소기 형상에 따른 연소특성 및 NOx 배기특성에 관한연구)

  • Choi, Minsung;Won, Onnuri;Kim, Minkuk;Na, Jongmoon;Choi, Gyungmin;Kim, Duckjool
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.229-231
    • /
    • 2012
  • A numerical analysis of a lean premixed combustor in a micro gas turbine was carried out to investigate the correlation between the turbulent mixing and emission characteristics on the combustor geometries. The interaction between the burners, by flow direction and momentum, significantly influenced on the turbulent mixing and combustion characteristics. The vortex which was generated by thermal expansion was observed during the combustion process, this was distinguished from the combustor geometries. The results showed that these characteristics can affect the NOx emission.

  • PDF

An Experimental Study on the Combustion Characteristics in Low Emission Multi-Staged Oil Burner (다단연소를 이용한 저 NOx 버너의 연소특성에 관한 연구)

  • An, Guk-Yeong;Kim, Han-Seok;Jo, Eun-Seong
    • 연구논문집
    • /
    • s.27
    • /
    • pp.101-108
    • /
    • 1997
  • The characteristics of combustion and emissions in multi-staged oil burner have been experimentally studied for the various range of equivalence ratios, drop sizes and fuel formulations. Malvern system was used to measure droplet size of fuel. Light fuel oil and light fuel oil doped with pyridine($C_5H _5N$) were used to investigate the effects on fuel NOx emission. The emissions of NO and CO in exhaust gas and the flame temperatures were measured by the gas analyzer and thennocouples. NOx emissions were increased by increasing the excess air ratio (range:$lambda=1.1-1.4$) or decreasing the SMD of droplet in single-staged burner. In comparison with the single-staged burner, the emission of NOx in multi-staged burner was reduced by 50% but CO emission was slightly increased. It is found that multi-staged burner has a good capability in reducing thermal NOx resulting from the distributed heat release rate and lower flame temperature in fuel-rich and fuel-lean combustion zone. Moreover, the fuel NOx emission of the multi-staged burner is lower than that of single-staged burner, because multi-staged burner has fuel rich zone where fuel N is converted to $N_2$ more than NO. In 3-staged burner, the percentage of each stage combustion air have strong influence on emission characteristics. It is also found that NOx emission can be reduced by decreasing inner and outer air percentage or increasing middle air flow rate and CO emission is vice versa.

  • PDF

Evaluation on Characteristics of Unsteady Combustion and Combustion Oscillation (비정상연소의 특성과 연소진동 평가)

  • Yang, Young-Joon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.5
    • /
    • pp.125-130
    • /
    • 2011
  • The characteristics of unsteady combustion were experimentally investigated using confined premixed flames stabilized by a rearward-facing step. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations and it has usually desirable performance such as high load combustion and low pollutant emission. It is known that combustion oscillation is occurred if Rayleigh's criterion is satisfied. The pressure fluctuation and OH-emission fluctuation were measured using pressure transducer and OH optical fiber respectively and then cross-corelation and phase difference were calculated to apply Rayleigh's criterion.

Experimental Investigation of Burning Pulverized Coal Particles: Emission Analysis and Observation of Particle Sample (연소중 미분탄의 발광 분석 및 입자 채집 관찰)

  • Kim, Dae-Hee;Choi, Sang-Min
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.19-26
    • /
    • 2010
  • Combustion behavior of pulverized coal particles in a post-combustion gas reactor was investigated. Radiation emission from coal particles were analyzed by direct photograph and $CH^*$ radical chemiluminescence intensity. Coal particles were sampled during the combustion and were observed by scanning electron microscopy (SEM) and cross section micrograpy technique. Two coal types(one bituminous and one subbituminous coals typically used in the Korean power plants) were tested at typical combustion environment. Gas flow conditions were controlled to represent temperature and oxygen concentration. Experimental data were discussed along with conceptual descriptions of pulverized coal combustion, where particle heat-up, release and combustion of volatiles, and char combustion were sequentially progressed.

A Study on Combustion and Emission Characteristics of a Diesel Engine Fuelled with Premixed Gasoline/Pilot Diesel (디젤 엔진에서 예혼합 가솔린/파일럿 디젤 이종연료의 연소 및 배출가스 특성에 관한 연구)

  • Kim, Minjae;Lim, Jonghan;Kang, Kernyong;Lee, Seokhwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.326-335
    • /
    • 2017
  • It is known that diesel engines have the disadvantage of high emission levels of NOx and PM. Therefore, many combustion strategies have been developed to reduce these harmful NOx and PM emissions in a diesel engine. Among these strategies, HCCI(Homogeneous Charge Compression Ignition) and PCCI(Premixed Charge Compression Ignition) are the most popular as these can reduce NOx and PM simultaneously. However, when a single fuel like diesel is applied, it is difficult to control the combustion phase and this can lead to power reduction. In this study, premixed gasoline and pilot diesel were used to overcome the problems of controllability of the combustion phase and harmful emissions. We injected gasoline directly into the combustion chamber and the gasoline/air mixture was ignited with a pilot diesel fuel near the top dead center. The results showed that the combustion and emission characteristics of dual-fuel combustion were comparable to those of conventional diesel combustion. When we applied the dual-fuel PCCI combustion concept, more than 90 % of NOx and PM emission was reduced simultaneously without significant degradation of efficiency compared to conventional diesel combustion.