• Title/Summary/Keyword: Combustion Characteristics Velocity

Search Result 419, Processing Time 0.02 seconds

Flame Propagation Characteristics of Propane-Air Premixed Mixtures (프로판-공기 예혼합기의 화염전파 과정에 관한 연구)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.2
    • /
    • pp.21-29
    • /
    • 1996
  • Flame propagation characteristics of propane-air mixtures were experimentally investigated in constant-volume combustion chambers. Flame propagation process was observed as a function of mixture strength, initial mixture temperature and initial mixture pressure in quiescent mixtures. A cylindrical combustion chamber and a spherical combustion chamber contain a pair of parallel windows through which optical access into the chamber can be provided. Laser two beam deflection method was adopted to measure the local flame propagation, which gave information on the flame size and flame propagation speed. Pressure development was also measured by a piezoelectric pressure transducer to characterize combustion in quiescent mixtures. Burning velocity was calculated from flame propagation and pressure measurements. The effect of flow on flame propagation was also investigated under flowing mixture conditions. Laser two beam method was found to be feasible in measuring flame propagation of quiescent mixtures. Flame was observed to propagate faster with higher initial mixture temperature and lower initial pressure. Combustion duration was shortened in the highly turbulent flowing mixtures.

  • PDF

Effect of Excess Air and Superficial Air Velocity on Operation Characteristics in a Fluidized Bed Coal Combustor (공탑속도 및 과잉공기비에 따른 석탄유동층연소로의 조업특성)

  • 장현태;차왕석;태범석
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.84-92
    • /
    • 1999
  • The effects of air velocity and excess air on combustion characteristics were studied in a fluidized bed combustor. The domestic low-grade anthracite coal with heating value of 2010 kcal/kg and the imported bituminous coal from Australia with heating value of 6520 kcal/kg were used as coal samples. The combustion characteristics of mixed fuels in a fluidized bed combustor could be interpreted by pressure fluctuation properties, ash distribution and gas emission. The properties of the pressure fluctuations, such as the standard deviation, cross-correlation function, dominant frequency and the power spectral density function, were obtained from the statistical analysis. From this study, the combustion region increased with increasing air velocity but decreased with excess air due to combustion characteristics of anthracite and bituminous coal.

  • PDF

An Investigation of the Fundamental Combustion Characteristics for the Utilization of LFG (LFG 활용을 위한 기초 연소특성 검토)

  • Lee, Chang-Eon;Oh, Chang-Bo;Kum, Sung-Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.1
    • /
    • pp.99-108
    • /
    • 2004
  • Fundamental combustion characteristics, such as the combustion potential, burning velocity and flame stability, for the practical utilization of LFG(Landfill gas) and LFG-blended fuels were experimentally investigated. The combustion potentials(CP) of LFG-blended fuels calculated from the previously suggested formulae were compared with burning velocities obtained by present experiments. The results showed that the previous formulae fur CP of LFG-blended fuels were not agreed with the experimental burning velocity, and these formulae should be revised. To provide an useful information needed to design the combustion devices, a triangular diagram was suggested for the maximum burning velocity of the mixture of CH$_4$, LPG and LFG. From the investigation of the burning velocity and the flame stability in a practical combustor, it was noted that the LFG-blended fuels, of which heating values or Wobbe indices were adjusted to that of natural gas, could be used as an alternative fuel of natural gas.

COMBUSTION CHARACTERISTICS AND HEAT FLUX DISTRIBUTION OF PREMIXED PROPANE MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • PARK K. S.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.79-85
    • /
    • 2005
  • This work is to investigate the surface heat flux and combustion characteristics of premixed propane mixture in a constant volume chamber. The experiment of heat flux and combustion characteristics of premixed propane mixture are performed with various equivalence ratio and initial pressure conditions. Based on the experimental results, it is found that the maximum instantaneous temperature is increased with the increase of initial pressure in the chamber. There are significant differences in the burning velocity of premixed propane mixture at different measuring points in the constant volume combustion chamber. A]so, the trends of temperature difference at each measuring points are similar to the burning velocity in the combustion chamber. It is concluded that the total heat loss during the combustion period is affected by the equivalence ratio and the initial condition of fuel-air mixture.

COMBUSTION CHARACTERISTICS OF INHOMOGENEOUS METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • Choi, S.H.;Jeon, C.H.;Chang, Y.J.
    • International Journal of Automotive Technology
    • /
    • v.5 no.3
    • /
    • pp.181-188
    • /
    • 2004
  • A cylindrical constant-volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of an inhomogeneous charge methane-air mixture under several parameters such as stratified pattern, initial charge pressure, ignition time and the excess air ratio of the initial charge mixture. Flow characteristics including mean velocity and turbulence intensity were analyzed by a hot-wire anemometer. The combustion pressure development, measured by a piezo-electric pressure transducer, was used to investigate the effect of initial charge pressure, excess air ratio and ignition times on combustion pressure and combustion duration. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to near-zero value at 3000 ms. For the stratified patterns, the combustion rate under the rich injection (RI) condition was the fastest. Under the initial charge conditions, the second mixture was accompanied by an increase in the combustion rate, and that the higher the mass which is added in the second stage injection, the faster the combustion rate.

A study on the development of liquefied natural gas-fired combustor (액화천연가스 연소기개발에 관한 연구)

  • 최병륜;오상헌;김덕줄
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.107-118
    • /
    • 1986
  • The presenet research attempts to examine the combustion characteristics and the structure of the flame in turbulent premixed flames and thus enhance the combustion performance that leads to the design of the effective combustion system (untilizing LNG). Following experimental investigations for several stabilized premixed flames were attempted to identify the interactive mechanism between flame structures and flow fields; Visualization by Schlieren method, measurement of flow velocity by LDV, detection of ion current by ion probe, measurement of fluctuating temperature by thermocouple having compensation circuit, average values with respect to time of fluctuating amount for flow velocity, temperature, ion current, etc., variable RMS values, PDFs, autocorrelation, crosscorrelation, spatial macroscale, power spectra, and velocity scale. Continuing the authors published studies whose flame dominated by coherent structures and the characteristics of combustion reaction for irregular three dimensional flame and stabilized flame by step were investigated with obtained experimental quantities. Results of this research are following : The most turbulent flames support the structure of a Wrinkled laminar flame or laminar flamelets. It also observed that combustion reaction is related to small tubulence microscales of the turbulent flow fields closly.

  • PDF

A Study on the Ignition Characteristics at Constant Volume Combustion Chamber of LPG (LPG 정적연소실내 점화특성에 관한 연구)

  • 박경석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.3
    • /
    • pp.75-82
    • /
    • 2004
  • The allowable exhaust standard has been intensified as a part of the countermeasure to decrease air pollution in the world. As the cars with an alternative fuel starts to get into the spotlight, the cars with low emission has been introduced and exhaust gas regulation forced in this country. These days, LPG vehicles, which infrastructure of fuel was already built up, and CNG vehicles are recognized for alternative fuel cars in this country. In this study, the constant volume combustion chamber was manufactured and used for experiments to obtain the ignition characteristics of LPG fuel and the optimal ignition energy. The experiment measured the combustion characteristics, in regard to the change of combustion variable, and the change of ignition energy. During the combustion of fuel, the maximum temperature inside the combustion chamber is higher when the initial pressure is higher. The burning velocity also seems to have the same characteristic as the temperature. However, the heat flux did not change much with the theoretical correct mixture but the various initial temperature of the combustion chamber. The heat flux got faster and ignition energy bigger as the dwell time of the ignition system expanded. When the dwell time get longer, the ignition energy also increased then fixed. The ignition energy increased as the initial pressure inside the combustion chamber higher. The heat flux got faster as the dwell time expanded.

The Effects of Injector and Swirler on the Flame Stability in a Model Combustor (모델연소기에서의 화염 안정화에 대한 분사기와 선회기의 영향)

  • Park, Seung-Hun;Lee, Dong-Hun;Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.2
    • /
    • pp.13-27
    • /
    • 1998
  • The optimization of frontal device including fuel nozzle and swirler is required to secure the mixing of fuel and air and the combustion stability leading the reduction of pollutant emissions and the increase of combustion efficiency in gas turbine combustor. The effects of injection nozzle and swirler on the flow field, spray characteristics and consequently the combustion stability, were experimentally investigated by measuring the velocity field, droplet sizes of fuel spray, lean combustion limit and the temperature field in the main combustion region. Flow fields and spray characteristics were measured with APV(Adaptive Phase Doppler Velocimetry) under atmospheric condition using kerosine fuel. Temperatures were measured by Pt-Pt13%Rh, R-type thermocouple which was 0.2mm thick. Spray and flame was visualized by ICCD(Intensified Charge Coupled Device) camera. It was found that the dual swirler resulted in the biggest recirculation zone with the highest reverse flow velocity at the central region, which lead the most stable combustion. The various combustion characteristics were observed as a function of the geometries of injector and swirler, that gave a tip for the better design of gas turbine combustor.

  • PDF

Combustion Performance Characteristics of a High Pressure Sub-scale Liquid Rocket Combustor (고압 축소형 연소기의 연소 성능 특성에 관한 연구)

  • Kim, Jong-Gyu;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.31-36
    • /
    • 2007
  • Combustion performance characteristics of subscale high-pressure combustor were investigated at 70 bar combustion pressure. All tests were successfully performed without any damage on the combustor. The mixing characteristics and distribution pattern of the injectors were found to have considerable influence on the combustion performance. The characteristic velocity of the combustor was higher in the injector with internal mixing than that of external mixing and in the injector with smaller mass flowrate. The pressure fluctuations at the propellant manifolds and the combustion chamber were measured to be less than 3% of the mean combustion pressure to meet the combustion stability criterion and to prove stable combustion characteristics of the combustor.

COMBUSTION CHARACTERISTICS OF HOMOGENEOUS CHARGED METHANE-AIR MIXTURE IN A CONSTANT VOLUME COMBUSTION CHAMBER

  • CHOI S. H.;CHO S. W.;JEONG D. S.;JEON C. H.;CHANG Y. J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.4
    • /
    • pp.323-332
    • /
    • 2005
  • A cylindrical constant volume combustion chamber was used to investigate the flow characteristics at the spark electrode gap and the combustion characteristics of a homogeneous charged methane-air mixture under various overall charge pressures, excess air ratios and ignition times. The flow characteristics, including the mean velocity and turbulence intensity, were analyzed with a hot wire anemometer. Combustion pressure development measured by piezoelectric pressure transducer, a flame propagation image acquired by ICCD camera and exhaust emissions measured by 2-valve gas chromatography were used to investigate effects of initial pressures, excess air ratios and ignition times on the combustion characteristics. It was found that the mean velocity and turbulence intensity had the maximum value around 200-300 ms and then decreased gradually to a near-zero value after 3000 ms and that the combustion duration was shorten and the flame speed and laminar burning velocity had the highest value under the condition of an excess air ratio of 1.1, an overall charge pressure of 0.15 MPa and an ignition time of 300 ms in the present study. The $CO_2$ concentration was proportional to the ignition time and overall charge pressure, the $CO_2$ concentration was proportional to the excess air ratio, and the UHC concentration was inversely proportional to the ignition time and overall charge pressure.