• Title/Summary/Keyword: Combustion Characteristics Velocity

Search Result 419, Processing Time 0.022 seconds

A Study on Combustion Characteristics of Refuse Derived Fuel(RDF) in Various Incinerators (연소방식별 폐기물 고형연료(RDF)의 연소특성 연구)

  • Kim Woo-Hyun
    • Resources Recycling
    • /
    • v.15 no.1 s.69
    • /
    • pp.46-57
    • /
    • 2006
  • For the development of combustion technology of RDF(refuse derived fuel), combustion characteristics are examined in bubbling fluidized bed, circulating fluidized bed, continuos combustor and batch type combustor. The characteristics of combustion and exhaust gas has been compared and analyzed in many type of combustion facilities, which has been utilized as basic data for the advanced research of specified RDF combustion facility. Stable combustion has been observed in bubbling and circulating fluidized bed from controled operating condition like the proper feeding rate and superficial gas velocity. In circulating fluidized bed, concentration of NOx has been increased with the operating condition by the fuel-NO and oxygen reaction and $SO_2$ can be considered not to be produced in RDF fluidized bed from very low concentration in flue gas. HCl concentration is 36.4 ppm as average value and lower than standard emission value, but the counter plan is needed. Shaped RDF and fluff RDF have been compared in continuos combustor and batch type combustor and shaped RDF shows benefit for the stable heat recovery and gas emission shows similar value and characteristics.

Fundamental study on combustion characteristics of methanol fuel in a constant volume chamber (정적연소기를 사용한 메탄올의 연소특성에 관한 연구)

  • 이태원;이중순;정성식;하종률
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.389-396
    • /
    • 1994
  • It is very important to clarify the ignition and flame propagation processes of methanol fuel in the Spark-ignition engine. High speed Schlieren photography and pressure trace analyses were used to study on combustion characteristics of methanol fuel in a constant volume chamber. Methanol-air mixtures equivalence rations from lean limit to 1.4 were ignited at initial pressure (0.1, 0.3, 0.5 MPa), temperature (313 343, 373 K) and ignition energy (40, 180 mJ). As the result of this study, we verified the characteristics such as ignition delay, effective thermal efficiency, flame propagation velocity, lean limit, ignitability and combustion duration. Obatained results are as follows. (1) The time to 10% reach of maximum pressure was 40-50% of the total combustion duration for this experimental condition hardly affected by equivalence ratio. (2) The Effective thermal efficiency, as calculated from maximum pressure was the highest when the mixture was slightly lean $({\phi} 0.8-0.9)$ and maximum pressure was the highest when the mixiture was slightly rich $({\phi} 1.2-1.2).$

COMPARISON OF THE COMBUSTION CHARACTERISTICS BETWEEN S.I. ENGINE AND R.I. ENGINE

  • Chung, S.S.;Ha, J.Y.;Park, J.S.;Kim, K.J.;Yeom, J.K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 2007
  • This experimental study was carried out to obtain both low emissions and high thermal efficiency by rapid bulk combustion. Two kinds of experiments were conducted to obtain fundamental data on the operation of a RI engine by a radical ignition method. First, the basic experiments were conducted to confirm rapid bulk combustion by using a radical ignition method in a constant volume chamber (CVC). In this experiment, the combustion velocity was much higher than that of a conventional method. Next, to investigate the desirable condition of engine operation using radical ignition, an applied experiment was conducted in an actual engine based on the basic experiment results obtained from CVC condition. A sub-chamber-type diesel engine was reconstructed using a SPI type engine with controlled injection duration and spark timing, and finally, converted to a RI engine. In this study, the operation characteristics of the RI engine were examined according to the sub-chamber's specifications such as the sub-chamber volume and the diameter and number of passage holes. These experimental results showed that the RI engine operated successfully and was affected by the ratio of the passage hole area to the sub-chamber volume.

A Study on the Combustion Characteristics over Pd/cordierite Catalyst (Pd/cordierite 촉매상에서 메탄의 연소 특성 고찰)

  • Cho, Won-Ihl;Oh, Young-Sam;Park, Dal-Ryung;Baek, Young-Soon;Pang, Hyo-Sun;Mok, Young-Il
    • Journal of Energy Engineering
    • /
    • v.6 no.1
    • /
    • pp.34-40
    • /
    • 1997
  • This study aims to investigate the application possibility on natural gas in relation to the catalytic combustion of methane on Pd/cordierite catalyst which is currently used as an automobile converter catalyst. The surface area of the catalyst tested was determined to be about 18.7㎡/g and to keep stable condition in structure at mid-high temperatures. The activation energy for methane combustion reaction was estimated to be 19.2 kcal/mol and a hysterisis on the catalyst activity was observed in terms of the catalyst deactivation as the reaction temperature was varied for the methane combustion. On Pd/cordierite catalyst, The characteristics of methane combustion were studied as functions of space velocity and air/fuel ratios below 700$^{\circ}C$.

  • PDF

A Numerical Study on the Combustion Characteristics for Stoker Type Incinerator with Various Injection Type of Secondary Air (2차 공기 주입방식에 따른 스토커형 소각로의 연소특성에 관한 수치해석적 연구)

  • Jung, Jin;Kim, Chang-Nyeong;Cho, Young-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.835-842
    • /
    • 2003
  • A three dimensional numerical analysis has been conducted for a stoker type incinerator which has the capacity of 1.5 ton/hr. The objective of the present study is to predict the effects of swirl induced by secondary air and to find an optimal operating condition of the incinerator. In this study, combustion characteristics such as distributions of temperature, velocity and concentration of each species have been examined with various injection types of secondary air and with different flow rates of secondary air in the incinerator. It is found that the secondary air injection on the combustion process makes the path of fluid particle longer in the combustor and enhances the mixing between air and combustion gas by arousing a swirl. Therefore, the injection type of secondary air can be an important key in the design process of incinerator.

A Study on Combustion Characteristics of a Multi Injector Rocket Engine using $H_2O_2$/Kerosene as propellants (과산화수소/케로신 다중 인젝터의 혼합비에 따른 연소 특성 연구)

  • Yu, I-Sang;Jeon, Jun-Su;kim, Jai-Ho;Kim, Wan-Chan;Ko, Yung-Sung;Kim, Sun-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.129-132
    • /
    • 2012
  • In this study, combustion performance tests of a multi coaxial-swirl injector engine using hydrogen peroxide and kerosene as propellants were performed to evaluate combustion characteristic according to mixture ratio between 6.0 and 9.0 by criterion of designed(7.6). Combustion characteristics were evaluated by calculated characteristic exhaust velocity($c^*$) and pressure fluctuation. Test results showed that the combustion efficiency was over 90% and the pressure fluctuation was within 1%.

  • PDF

An Experimental study on the drop size and velocity characteristic of drop by impinging jets (충돌분류에 의한 액적의 크기 및 속도특성에 관한 실험적 연구)

  • Han, Jae-Seob;Kim, Seon-Jin
    • Journal of ILASS-Korea
    • /
    • v.4 no.4
    • /
    • pp.30-37
    • /
    • 1999
  • The breakup characteristics of liquid sheet formed by the liquid rocket injector has a close relation with the combustion efficiency. In this paper, basic characteristics of droplet size and velocity distribution were measured with PDPA for the Like Doublet Impinging Injector. Test variables were the angle of impact, the diameter of orifice and jet velocity. Water was used as test fluid. As a result, for impingement angle less than 90 degree, following correlations were obtained between drop size and design parameters : $D_{32}({\mu}m)=295.0{\times}V^{-0.09}\times(2\theta)^{-0.1}{\times}d^{0.072}$. For impingement angle greater than 100 degree, drop sizes were increased but eventually converged to a certain limiting value.

  • PDF

A study on the measurement and characterization of tubulent flow inside an engine cylinder (엔진 실린더내 난류유동 측정과 정량화방법에 관한 연구)

  • 강건용;엄종호;김용선
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.39-47
    • /
    • 1992
  • The engine combustion is one of the most important process affecting performance and emissions. One effective way to improve the engine combustion is to control motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence in a gasoline engine. This paper describes the measurement and characterization of mean velocity and turbulence intensity inside the cylinder of a 4-valve gasoline engine using laser Doppler velocimeter(LDV) under motoring(non-firing) conditions. Since the measured LDV data in each cycle show small cycle variation during compression stroke in the tested engine, the mean velocity and turbulence intensity are calculated by ensemble averaging method neglecting cycle variation effects. In the ensemble averaging method, the effects of the calculation window, in which velocities are assumed as the same crank angle, on mean velocity and turbulence intensity are fully investigated. In addition, the effects of measuring point on the flow characteristics are studied. With large calculation window, the mean velocity is shown to be less sensitive with respect to crank angle and turbulence intensity decrease in its absolute amplitude. When the piston approch to the top dead center of compression, the turbulence intensity is found to be homogeneous in the cylinder.

  • PDF

Evaluation of Heat Loss by Means of Plasma Jet Ignition during Combustion Duration in the Constant Volume Vessel (정적연소실내에서의 플라즈마 제트 점화에 대한 연소기간중의 열손실산정)

  • 김문헌;문경태;박정서;김홍성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.96-103
    • /
    • 2003
  • In this paper, the heat loss to the constant volume vessel wall was investigated using instantaneous heat flux sensor, schlieren visualization, pressure rise curve. And the heat loss characteristics of plasma jet ignition were compared with conventional spark ignition. In case of plasma jet ignition, the flame kernel moves toward the center of combustion vessel in the initial period of combustion, and the flame surface spread out to the vessel wall. However, in case of conventional spark ignition, the flame surface contact with combustion vessel wall in the initial period of combustion. As a result, heat loss in the combustion duration for conventional spark ignition increase faster than that of plasma jet ignition. And the combustion enhancement rate of plasma jet ignition is higher than that of conventional spark ignition, and it was found that the heat loss rate is inversely proportional to the combustion enhancement rate.

Heat Transfer in the Combustion Chamber for the Compact Hot-Water Boiler (콤팩트 온수 보일러 연소실의 열전달 특성)

  • Cho, Jung-Hwan;Seo, Tae-Beom;Kim, Wook-Jung;Kim, Chang-Ju
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.459-464
    • /
    • 2001
  • A mathematical model has been developed to describe the turbulent and reversed flow with convective heat transfer in a cylindrical combustion chamber. By using the mathematical model for high temperature flow enables the trends in overall heat transfer rates to be predicted. The model was applied to the design of the combustion chamber. The influences of the size of air inlet and inlet velocity were investigated for process optimization. Through modelling work it is found that the heat transfer rate to the chamber wall may be enhanced by adjusting the air flow and heat transfer pattern through selecting the air inlet condition. Internal plate has less influence to the heat transfer characteristics.

  • PDF