• Title/Summary/Keyword: Combustion Characteristics Velocity

Search Result 419, Processing Time 0.025 seconds

Numerical studies of the oxygen and air combustion performance in a Corner-type coal fired boiler (발전용 코너 보일러의 순산소 및 공기연소 화로해석)

  • Lee, Incheol;Jang, Seokwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.198.2-198.2
    • /
    • 2010
  • Three dimensional numerical analysis of the oxygen and air were performed to investigate the combustion characteristics in a Corner-type pulverized coal boiler. With the actual operation data of the power plant, the distribution of velocity, gas temperature, $O^2$, $CO_2$, $H_2O$, $N_2$ as well as the particle tracking in the boiler were investigated. The predicted values at the outlet of furnace for the gas temperature and major species concentrations gave a good agreement with the designed values. The present analysis on combustion characteristics in a boiler would provide the useful information for the stable boiler operation and in trouble shooting boiler problem.

  • PDF

Effects of Combustion Characteristics of the Burners for Non-Oxidizing Direct Fired Furnaces on the Oxidization of the Surface of Steel Plate (무산화 직화로 버너의 연소특성이 강재표면의 산화에 미치는 영향)

  • Park, Heung Soo;Riu, Kap Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.330-341
    • /
    • 1999
  • An experimental study for the two types of burners used in the non-oxidizing direct fired furnaces of the heat treatment process for the cold rolled plate has been carried out to investigate the combustion characteristics and the oxidization of the surface of steel plate. A steep temperature gradient and entrainment of residual oxygen were found near the heating surface in the flame of the nozzle mixing burner which has strong swirl velocity component. It was concluded that the elimination of the residual oxygen and the increase of the temperature of combustion gas on the heating surface are needed to enhance the performance of the burners for application to the non-oxidizing direct fired furnaces.

A Study on Flow and Combustion Characteristics of Flat Flame Burner (Flat Flame Burner의 유동과 연소 특성에 관한 연구)

  • Jeong, Y.K.;Kim, C.K.;Jeon, C.H.;Chang, Y.J
    • 한국연소학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.59-66
    • /
    • 2000
  • In this study, We studied flow and combustion characteristics of a Flat Flame Burner(FFB) with swirler. As swirl number increase, the streamlines is proceed close to tile and velocity is large. Blow-off limit decrease when swirl number is 1.24, but blow-off limit increase when combustion load is 6500kcal/hr. Temperature distribution is uniform in front of tile and NO formation is small at S=1.24. We expect that the radiation can be transmitted to the object and NOx will reduce because of recirculation zone

  • PDF

The Effect of Operating Conditions on the Heat-flow Characteristics and Reforming Efficiency of Steam Reformer with Combustor (연소기가 장착된 수증기 개질기에서 운전조건이 열유동 특성 및 개질효율에 미치는 영향)

  • Kim, Ji-Seok;Lee, Jae-Seong;Kim, Ho-Young
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.36-45
    • /
    • 2011
  • The heat-flow characteristics and reforming efficiency of steam reformer with combustor are numerically investigated at various operating conditions. SCR(Steam to Carbon Ratio) and GHSV(Gas Hourly Space Velocity) are adopted as important operating conditions. User-Defined-Function(UDF) was used to simultaneously calculate reforming and combustion reaction. Numerical results show that hot burned gas rise by a buoyant force and heat exchange between reforming reactors and cocurrent flow occurs in the combustion region. The results also indicate that an increase of SCR leads to decrease the mole fraction of hydrogen at the reactor outlet. As GHSV increases, conversion rate decreases.

An Experimental Study on the Characteristic of Sprays and Spray Flames by Twin-Fluid Atomizer (2유체 분사노즐을 이용한 분무 및 연소특성에 관한 실험적 연구)

  • 백민수;오상헌
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.548-558
    • /
    • 1995
  • An experimental investigation has been conducted to study the spray and combustion characteristics using the air-assisted twin fluid atomizer. Axial mean and fluctuating velocity components as well as drop-size distributions in non-reaction spray were measured with a nonintrusive phase doppler technique. Droplet number density distributions were also visualized using high speed CCD camera. Locations of spray and flame boundaries are obtained by direct photographic method. It is confirmed that at the fixed fuel flow rate, the increase of the atomizing air flow causes improvements on both spray and combustion characteristics under stable flame conditions. Internal group combustion modes where flame is located inside the spray boundary are observed to exist in the upstream region of higher droplet number density.

Experimental study on combustion characteristics of oxy-fuel glass melting furnace (순산소를 이용한 유리 용해로의 연소특성에 관한 실험적 연구)

  • Kim, Se-Won;Ahn, Jae-Hyun;Kim, Yong-Mo;Shin, Myung-Chul
    • Journal of the Korean Society of Combustion
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2004
  • The results of a series of experiments executed by using two pilot-scale oxy-fuel burners are presented. The oxy-fuel burners are designed for maximum capacity of 50,000kcal/hr, 200,000kcal/hr and installed in the test furnace. The effects of turn-down ratio, excess oxygen ratio, nozzle exit velocity, injection angle, and swirl vane angle on the combustion characteristic are investigated. Temperature distributions are measured using R-type and Molybdenum sheathed C-type thermocouple at various points of the flame. The results showed that maximum temperature and mean temperature increase with the increase of turn-down ratio and momentum. The maximum flame temperature was increased about 35% compared to the case of equivalent air operated condition. In addition, optimum burner type, excess oxygen ratio and nozzle characteristics are obtained for this oxy-fuel glass melting furnace.

  • PDF

Effect of Solid Mass Inventory on Hydrodynamics Characteristics in a Circulating Fluidized Bed (순환유동층에서 유동매체량에 따른 수력학적 특성 연구)

  • Kim, E.K.;Shin, D.;Lee, J.;Kim, J.;Hwang, J.
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.4
    • /
    • pp.10-20
    • /
    • 2002
  • This paper discusses effect of solid mass inventory on the hydrodynamic characteristics of circulating fluidized bed(CFB). Operating parameters of solid mass inventory and air flow rates were varied to understand their effects on fludization pattern. Experimental measurements were made in a CFB of which height and diameter are 3m and 0.05m respectively. Black SiC particles ranging from $100{\mu}m\;to\;500{\mu}m$ were employed as the bed material. Superficial gas velocity of riser and J-valve fluidizing velocity were in the ranges of $1.39{\sim}3.24m/s\;and\;0.139{\sim}0.232m/s$, respectively. The axial solid fraction and solid circulation rate of CFB were calculated based on the experimental data and compared with modellings through IEA-CFBC Model and commercial CFD code.

  • PDF

A Study on the Laminar Burning Velocity and Flame Structure with H2 Content in a Wide Range of Equivalence Ratio of Syngas(H2/CO)/Air Premixed Flames (넓은 당량비 구간에서 수소함유량에 따른 합성가스(H2/CO)/공기 예혼합화염의 연소속도 및 화염구조에 관한 연구)

  • Jeong, Byeong-Gyu;Lee, Kee-Man
    • Journal of the Korean Society of Combustion
    • /
    • v.19 no.1
    • /
    • pp.17-28
    • /
    • 2014
  • In this study, the laminar burning velocity of syngas fuel($H_2/CO$) and flame structure with various hydrogen contents were studied using both experimental measurements and detailed kinetic analysis. The laminar burning velocities were measured by the angle method of Bunsen flame configuration and the numerical calculations including chemical kinetic analysis were made using CHEMKIN Package with USC-Mech II. A wide range of syngas mixture compositions such as $H_2$ : CO = 10 : 90, 25 : 75, 50 : 50, 75:25 and equivalence ratios from lean condition of 0.5 to rich condition of 5.0 have been considered. The experimental results of burning velocity were in good agreement with previous other research data and numerical simulation. Also, it was shown that the experimental measurements of laminar burning velocity linearly increased with the increment of $H_2$ content although the burning velocity of hydrogen is faster than the carbon monoxide above 10 times. This phenomenon is attributed to the rapid production of hydrogen related radicals such as H radical at the early stage of combustion, which is confirmed the linear increase of radical concentrations on kinetic analysis. Particular concerns in this study are the characteristics of burning velocity and flame structure different from lean condition for rich condition. The decrease of OH radicals and double peaks are observed with $H_2$ content in rich condition once $H_2$ fraction exceeds over threshold.

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

Effect of Oxygen Enriched Air on the Combustion Characteristics in a Coaxial Non-Premixed Jet ( I ) - Lift-off and Flame Stability - (산소부화공기가 동축 비예혼합 제트의 연소특성에 미치는 영향 (I) - 화염의 부상과 안정성)

  • Kwark, Ji-Hyun;Jeon, Chung-Hwan;Chang, Young-June
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.160-166
    • /
    • 2004
  • Combustion using oxygen enriched air is known as a technology which can increase flame stability as well as thermal efficiency due to improving the burning rate. Lift-off, blowout limit and flame length were examined as a function of jet velocity, coflow velocity and OEC(Oxygen Enriched Concentration). Blowout limit of the flame below OEC 25% decreased with increase of coflow velocity, but the limit above OEC 25% increased inversely. Lift-off height decreased with increase of OEC. In particular, lift-off hardly occurred in the condition above OEC 40%. Flame length of the flames above OEC 40% was increased until the blowout occurred. Great flame stability was obtained since lift-off and blowout limit significantly increased with increase of OEC.