• Title/Summary/Keyword: Combined heat and power system

Search Result 188, Processing Time 0.038 seconds

An Application of Realistic Evaluation Model to the Large Break LOCA Analysis of Ulchin 3&4

  • C. H. Ban;B. D. Chung;Lee, K. M.;J. H. Jeong;S. T. Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.429-434
    • /
    • 1996
  • K-REM[1], which is under development as a realistic evaluation model of large break LOCA, is applied to the analysis of cold leg guillotine break of Ulchin 3&4. Fuel parameters on which statistical analysis of their effects on the peak cladding temperature (PCT) are made and system parameters on which the concept of limiting value approach (LVA) are applied, are determined from the single parameter sensitivity study. 3 parameters of fuel gap conductance, fuel thermal conductivity and power peaking factor are selected as fuel related ones and 4 parameters of axial power shape, reactor power, decay heat and the gas pressure of safety injection tank (SIT) are selected as plant system related ones. Response surface of PCT is generated from the plant calculation results and on which Monte Carlo sampling is made to get plant application uncertainty which is statistically combined with code uncertainty to produce the 95th percentile PCT. From the break spectrum analysis, blowdown PCT of 1350.23 K and reflood PCT of 1195.56 K are obtained for break discharge coefficients of 0.8 and 0.5, respectively.

  • PDF

Exergetic design and analysis of a nuclear SMR reactor tetrageneration (combined water, heat, power, and chemicals) with designed PCM energy storage and a CO2 gas turbine inner cycle

  • Norouzi, Nima;Fani, Maryam;Talebi, Saeed
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.677-687
    • /
    • 2021
  • The tendency to renewables is one of the consequences of changing attitudes towards energy issues. As a result, solar energy, which is the leader among renewable energies based on availability and potential, plays a crucial role in full filing global needs. Significant problems with the solar thermal power plants (STPP) are the operation time, which is limited by daylight and is approximately half of the power plants with fossil fuels, and the capital cost. Exergy analysis survey of STPP hybrid with PCM storage carried out using Engineering Equation Solver (EES) program with genetic algorithm (GA) for three different scenarios, based on eight decision variables, which led us to decrease final product cost (electricity) in optimized scenario up to 30% compare to base case scenario from 28.99 $/kWh to 20.27 $/kWh for the case study. Also, in the optimal third scenario of this plant, the inner carbon dioxide gas cycle produces 1200 kW power with a thermal efficiency of 59% and also 1000 m3/h water with an exergy efficiency of 23.4% and 79.70 kg/h with an overall exergy efficiency of 34% is produced in the tetrageneration plant.

Initial estimates of the economical attractiveness of a nuclear closed Brayton combined cycle operating with firebrick resistance-heated energy storage

  • Chavagnat, Florian;Curtis, Daniel
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.488-493
    • /
    • 2018
  • The Firebrick Resistance-Heated Energy Storage (FIRES) concept developed by the Massachusetts Institute of Technology aims to enhance profitability of the nuclear power industry in the next decades. Studies carried out at Massachusetts Institute of Technology already provide estimates of the potential revenue from FIRES system when it is applied to industrial heat supply, the likely first application. Here, we investigate the possibility of operating a power plant (PP) with a fluoride-salt-cooled high-temperature reactor and a closed Brayton cycle. This variant offers features such as enhanced nuclear safety as well as flexibility in design of the PP but also radically changes the way of operating the PP. This exploratory study provides estimates of the revenue generated by FIRES in addition to the nominal revenue of the stand-alone fluoride-salt-cooled high-temperature reactor, which are useful for defining an initial design. The electricity price data is based on the day-ahead markets of Germany/Austria and the United States (Iowa). The proposed method derives from the equation of revenue introduced in this study and involves simple computations using MatLab to compute the estimates. Results show variable economic potential depending on the host grid but stress a high profitability in both regions.

Theoretical Study on Fuel Savings of Marine Diesel Engine by Exhaust-Gas Heat-Recovery System of Combined Cycle (복합 사이클의 배기가스 열회수 시스템에 의한 선박용 디젤엔진의 연료 절약에 관한 이론적 연구)

  • Choi, Byung Chul;Kim, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.2
    • /
    • pp.171-179
    • /
    • 2013
  • The thermodynamic characteristics of a combined cycle applied with a topping cycle such as a trilateral cycle at relatively high temperatures and a bottoming cycle such as an organic Rankine cycle at relatively low temperatures have been theoretically investigated. This is an electric generation system used to recover the waste heat of the exhaust gas from a diesel engine used for the propulsion of a large ship. As a result, when the boundary temperature between the topping and the bottoming cycles increased, the system efficiencies of energy and exergy were simultaneously maximized because the total exergy destruction rate (${\sum}\dot{E}_d$) and exergy loss ($\dot{E}_{out2}$) decreased, respectively. In the case of a marine diesel engine, the waste heat recovery electric generation system can be utilized for additional propulsion power, and the propulsion efficiency was found to be improved by an average of 9.17 % according to the engine load variation, as compared to the case with only the base engine. In this case, the specific fuel consumption and specific $CO_2$ emission of the diesel engine were reduced by an average of 8.4% and 8.37%, respectively.

CFD Analysis on the Heat Transfer Performance with Various Obstacles in Air Channel of Air-Type PV/Thermal Module (공기식 태양광/열 시스템 공기채널 내 여러 저항체 설치에 따른 전열성능에 관한 CFD 해석)

  • Choi, Hwi-Ung;Fatkhur, Rokhman;Kim, Young-Bok;Yoon, Jung-In;Son, Chang-Hyo;Choi, Kwang-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.2
    • /
    • pp.33-43
    • /
    • 2018
  • PV/Thermal module is the combined system, which consist of a photovoltaic module and solar thermal collector that can obtain electrical power and thermal energy simultaneously. Thus the power generation can be increase by decreasing the temperature of photovoltaic module and thermal energy retrieved from module also can be used for heating system. In this study, Heat transfer performance of air type PV/Thermal module was confirmed with various bottom obstacles that can be installed easily to real photovoltaic module by CFD (computational fluid dynamics) analysis. Eight type obstacles were investigated according to the shape and arrangement. As a result, nusselt number represent heat transfer performance was increased about 86% compare with the basic type PV/Tthermal module that has no obstacle and triangle type obstacle had higher value than other types. But pressure drop was also increased with increment of heat transfer enhancement. Thus the performance factor considering both heat transfer and pressure drop was confirmed and V-fin type obstacle arranged in a row for Reynolds number below 9,600 and protrusion type obstacle arranged in zigzag for Reynolds number above 14,400 were shown higher performance factor than other types. From these results, V-fin type obstacle arranged in row and protrusion type obstacle arranged in zigzag were considered as a proper type for applying to real PV/thermal module according to operating condition. But the heat transfer performance can be changed by the geometric conditions of obstacle such as height, width, length and arrangement. Thus, it could also confirmed that the optimal condition and arrangement of this obstacle need to be found in further study.

Experimental Study on the Combined Effect of Power and Heat according to the Ventilation of Back Side in Roof Integrated PV System (주택 지붕일체형 PV시스템 후면환기에 따른 발전성능 변화 실험연구)

  • Yoon, Jong-Ho;Han, Kyu-Bok;An, Young-Sub
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • Building integrated photovoltaic(BIPV) system operates as a multi-functional building construction material. They not only produce electricity, but also are building integral components such as facade, roof, window and shading device. As PV modules function like building envelope in BIPV, combined thermal and PV performance should be simultaneously evaluated. This study is to establish basic Information for designing effective BIPV by discovering relations between temperature and generation capability through experiment when the PV module is used as roof material for houses. To do so, we established 3kW full scale mock-up model with real size house and attached an PV array by cutting in half. This is to assess temperature influence depending on whether there is a ventilation on the rear side of PV module or not.

The Pathologic study on 『Wenbingtiaobian』 (『온병조변』의 병리학적 고찰)

  • Park, Mi Sun;Kim, Yeong Mok
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.31 no.1
    • /
    • pp.8-19
    • /
    • 2017
  • This study on "Wenbingtiaobian" covers identifying pattern of prescription, understanding system of multiple syndrome differentiations, characteristics of treatment and medicinal substances. The source books are "Korean translation of Wenbingtiaobian", "Modern Shanghanlun", "Jinkuiyaolueyishi", "Chinese Medicine Formulas". "Wenbingtiaobian" has system of multiple patterns including three energizer syndrome differentiation, classification of disease, six meridian syndrome differentiation and wei-qi-ying-xue syndrome differentiation. That describes cause, location, nature, power and transmutation of disease. Wei-qi-ying-xue pattern is meaningful to warm-heat disease and three energizer pattern is relevant to dampness-heat disease. The warm disease shows mostly yang brightness bowel syndrome and patterns of three yin viscera. In aspect of the heat disease, qi aspect pattern makes up the largest number of syndrome differentiation and have sometimes with bowel excess or fluid deficiency. And treatment for wei aspect pattern is primarily 'outthrust the pathogen with pungent-cool'. Deficiency cold pattern and cold pattern with dampness occupy most of cold patterns. And many dampness patterns are dampness-heat pattern in middle energizer and 'inhibited lung qi transforming' is major mechanism. Patterns with fluid deficiency in qi aspect syndrome appear mostly in upper or middle energizer and in xue aspect syndrome appear mostly in lower energizer and they form 20% of all syndrome differentiations. The treatment of clearing heat uses pungent-cool(cold) for upper energizer, sweet-cold for middle energizer, sweet(salty)-cold for lower energizer. The treatment of tonifying yin uses mostly salty-cold for middle or lower energizer. The treatment of outthrusting pathogen is applied to all the wei-qi-ying-xue aspect combined with other treatments by using pungent-cool(cold) and light herbs. Understanding diseases in the respect of syndrome differentiation can enhance understanding of modern diseases from a perspective of Korean Traditional Medicinal(KTM) and can make clinical application of KTM treatments easy. Data from this study are expected to be basic for standardization and systemization of KTM.

Field Application of a Latent Heat Storage Tank for Load Shaving of Domestic Hot Water Supply in District Heating (지역난방 급탕공급 부하균등화를 위한 잠열축열조의 현장 적용)

  • Park, Sung Yong;Yoo, Hoseon
    • Plant Journal
    • /
    • v.17 no.2
    • /
    • pp.42-47
    • /
    • 2021
  • In terms of district heating operation, efficient production and supply of heat by alleviating the peak load at a specific time require an application technology that can solve the inconvenience of the user and the difficulties of the supplier. In this study, a 78 ℃ class PCM heat storage tank suitable among the technologies that can solve these problems was manufactured and applied to the hot water supply facility for apartments in district heating users. As a result of the application of this system, it was confirmed that the supply temperature was constant to the user compared to the existing supply method. In addition, it was confirmed that the reduction of the peak load due to load equalization reduced the heat supply margin of 10% in the existing heat supply facility. And the construction cost of the new heat supply facility and the construction cost of heat users is decreased by 5% and 10%, respectively.

A Study on the Thermal Designs of 300 MW-Class IGCC Plant (300 MW급 IGCC 플랜트의 열 설계 연구)

  • 이윤경;서석빈;김종진
    • Journal of Energy Engineering
    • /
    • v.11 no.2
    • /
    • pp.81-89
    • /
    • 2002
  • IGCC (Integrated Coal Gasification Combined Cycle) is a technology that generates electric power using coal gasification and gasified fuel. Carbon conversion value of IGCC is higher and the influence on the environment is lower than the pulverized coal power plant. Especially, in the nations where the weight of fossil fuel for power generation is remarkably high like in Korea, IGCC stands out as an alternative plan to cope with sudden limitation for the emissions. In this paper, system design study for the commercial IGCC system which the introduction is imminent to Korea was performed. Two cases of entrained gasification process are adapted, one is FHR(full heat recovery) type IGCC system for high efficiency and the other is Quench type IGCC system for low cost. System simulations using common codes like AspenPlus were performed for each system. In the case of Quench system, system option study and sensitivity analysis of the air extraction rate was performed. Thermal performance result for the FHR system is 42.6% (HHV, Net) and for the quench system is 40% (HHV, net) when 75% air is extracted.

A Study on Simplified Robust Optimal Operation of Microgrids Considering the Uncertainty of Renewable Generation and Loads (신재생에너지와 부하의 불확실성을 고려한 마이크로그리드의 단순화된 강인최적운영 기법에 관한 연구)

  • Lee, Byung Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.513-521
    • /
    • 2017
  • Robust optimal operation of a microgrid is required since the increase of the penetration level of renewable generators in the microgrid raises uncertainty due to their intermittent power output. In this paper, an application of probabilistic optimization method to economical operation of a microgrid is studied. To simplify the treatment of the uncertainties of renewable generations and load, the new 'band of virtual equivalent load variation' is introduced considering their uncertainties. A simplified robust optimization methodology to generate the scenarios within the band of virtual equivalent load variation and to obtain the optimal solution for the worst scenario is presented based on Monte Carlo method. The microgrid to be studied here is composed of distributed generation system(DGs), battery systems and loads. The distributed generation systems include combined heat and power(CHP) and small generators such as diesel generators and the renewable energy generators such as photovoltaic(PV) systems and wind power systems. The modeling of the objective function for considering interruption cost by the penalty function is presented. Through the case study for a microgrid with uncertainties, the validity of proposed robust optimization methodology is evaluated.