• Title/Summary/Keyword: Combined cooling

Search Result 251, Processing Time 0.028 seconds

A Study on the Characteristic of the Thermal Environment in the Cooling System at the Apartment (공동주택 거실의 냉방방식에 따른 열환경 특성에 관한 연구)

  • 이무진
    • Journal of the Korean housing association
    • /
    • v.10 no.4
    • /
    • pp.111-120
    • /
    • 1999
  • The purpose of this study is to evaluate the efficiency of the thermal environment created by the cooling system at the apartment that combines the forced convection cooling(the system reducing humidity from room) with the floor cooling radiation which uses the floor panel from floor heating system, a general residential heating system in Korea. In this study, the combined cooling system in which air supply, spurt temperature difference and interior draft are reduced, is compared with the existing forced convection cooling system. To identify the effect of the comparison concretely, a comparative experiment is carried out on tour conditions, ie, convection cooling, floor radiation convection cooling and floor radiation cooling. Through it the characteristical thermal environment formed within the model room is analyzed, and the conveying system of compressed floor chill and condensation problem are reviewed.

  • PDF

Development of Night Cooling System for Greenhouse Using Cool Air and Water from an Abandoned Coal Mine (폐광의 냉기 및 냉수를 이용한 온실의 야냉 시스템 개발)

  • Kang, Whoa-Seug;Kang, Wie-Soo;Lee, Gwi-Hyun;Oh, Jae-Heun;Kim, Ii-Seop;Yoo, Keun-Chang
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.223-231
    • /
    • 1996
  • This study was to develop the most effective cooling system which is needed to cool greenhouse during summer night for getting up early blooming of strawberry. Various cooling systems were designed and constructed to use cool air and water from an abandoned coal mine. Cooling systems built for this study included an evaporative cooling system with cooling pad, heat exchanger using small or large radiator, and cooling duct for drawing cool air from coal mine. The cooling pad, small or large radiator and cooling duct were individually tested. Also, combined cooling system was tested by operating cooling pad, small radiator, and cooling duct simultaneously. The results in this study showed that individual cooling systems such as cooling pad, small radiator, and cooling duct had about the same effect on cooling greenhouse. The combined cooling system had little better cooling effect than individual cooling system except the large radiator. The most effective cooling system for cooling of greenhouse was obtained by using a large radiator as the heat exchanger. By using a large radiator, temperature in greenhouse was dropped into about $15^{\circ}C$ when outside temperature was $23-24^{\circ}C$ during summer night.

  • PDF

A Study on The Performance of Ventilation and Thermal Environment for a Combined Type Diffuser in a Residential Space (거주공간에 대한 급·배기 일체형 디퓨저의 환기 및 온열환경 유지성능에 대한 연구)

  • Lim, Seok-Young;Chang, Hyun-Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.2
    • /
    • pp.74-81
    • /
    • 2017
  • In this study, the combined-type diffuser developed by the Authors, in a previous study, was applied to a residential space. The performance of a ventilation and thermal environment, created by the use of a combined-type diffuser was compared to the pan-type diffuser widely used in apartment houses. In cooling conditions, because of the relatively high air flow rate of ceiling cassette-type air conditioners, the characteristics of airflow distribution in a room were governed by the air conditioner's airflow. In heating conditions, because of the low air flow rate of the diffuser, the characteristics of airflow distribution were governed by the buoyancy effect created by cold external walls and a hot floor. In terms of the Air Diffusion Performance Index (ADPI), which is a thermal environmental index, the result of a combined-type diffuser was greater than a pan-type diffuser in both of cooling and heating conditions. Consequently, the combined-type diffuser showed equal or superior ventilation and thermal environment performance compared to a pan-type diffuser.

A Study on the Cooling Load Generation for Efficient Energy Management (냉방부하 수요 창출을 통한 효율적 에너지 관리방안 연구)

  • Woo, Nam-Sub;Kim, Yong-Ki;Lee, Tae-Won
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1012
    • /
    • 2008
  • Demand for the highly efficient and high performance urban energy supply system having been continuously increased according to the rise of quality of life and continuously increased energy cost all over the world. The district heating and cooling system is very effective way for energy saving, cost reduction, and demand side management of energy. There are several district cooling supply technologies such as chilled water direct transportation, installation of absorption type chiller in the user side, and desiccant cooling. This study investigates the advantage and technical problems of each district cooling technology. Also, it is necessary political and financial support system for the extension of district cooling system.

  • PDF

Fabrication of Cores for the Injection Mould with a High Cooling Rate and Injection Molding Using the Fabricated Core (고속 냉각 특성을 가진 사출성형 금형 코어 제작 및 사출 성형)

  • Ahn, D.G,
    • Transactions of Materials Processing
    • /
    • v.16 no.7
    • /
    • pp.549-554
    • /
    • 2007
  • The objective of this paper is to investigate into the fabrication technology of cores for the injection mould with three-dimensional conformal cooling channels to reduce the cooling time. The location of the conformal cooling channels has been determined through the injection molding analysis. The mould has been manufactured from a hybrid rapid tooling technology, which is combined a direct metal rapid tooling with a machining process. Several injection molding experiments have been performed to examine the productivity and the validity of the designed mould. From the results of the experiments, it has been shown that the proposed mould can mold a final product within a cooling time of 3 seconds and a cycle time of 21 seconds, respectively.

A Numerical Study on the Performance Analysis of the Plume Abatement NWD Cooling Tower (백연 방지를 위한 NWD냉각탑의 성능해석에 관한 수치해석적 연구)

  • 최창혁;최영기;소헌영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.11
    • /
    • pp.1049-1058
    • /
    • 2001
  • The performance and design analysis for a NWD cooling tower using a combined wet and dry type fill are numerically investigated and compared with the experimental results. The Stoecker's method is applied to the wet section and LMTD or NTU-Effectiveness method to the wet and dry sections. The efficiency ratio of the NWD cooling tower to a wet type crossflow cooling tower is 59.34%. The predicted result shows a good agreement with the experimental data within 1.4% error. Plume abatement is far better with a NWD cooling tower than a counterflow cooling tower. It costs less than a conventional wet/dry tower because the finned exchanger is eliminated. This method also leaves out complexity in structure and Intricacy in operation.

  • PDF

Solar Absorption Cooling System applicable to Educational Facilities (교육시설에 적용 가능한 태양열 흡수식 냉각 시스템)

  • Youn, Sung-Min;Paek, In-Su;Han, Young-Tae;Nam, Hyo-Gab
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.18 no.3
    • /
    • pp.35-41
    • /
    • 2011
  • Performance of a small-capacity solar absorption cooling system was investigated experimentally. Ten sets of evacuative-tube solar-heat collectors and a 5 kW single-stage absorption cooler were combined to produce a hybrid cooling system. The performance of the cooling system was measured using a tim-coil unit installed in a small plastic storage. It was found from the test on a sunny day of May that when the temperature of the hot water supplied from the solar collectors to the generator of the absorption cooler reached $60^{\circ}C$, the absorption cooler started cooling and the cold water temperature measured from the fan-coil unit reached $18^{\circ}C$. The COP, which is defined as the ratio of the cooling power to the total electrical power input was higher than 1.0.

  • PDF

Towards a reduced order model of battery systems: Approximation of the cooling plate

  • Szardenings, Anna;Hoefer, Nathalie;Fassbender, Heike
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.43-54
    • /
    • 2022
  • In order to analyse the thermal performance of battery systems in electric vehicles complex simulation models with high computational cost are necessary. Using reduced order methods, real-time applicable model can be developed and used for on-board monitoring. In this work a data driven model of the cooling plate as part of the battery system is built and derived from a computational fluid dynamics (CFD) model. The aim of this paper is to create a meta model of the cooling plate that estimates the temperature at the boundary for different heat flow rates, mass flows and inlet temperatures of the cooling fluid. In order to do so, the cooling plate is simulated in a CFD software (ANSYS Fluent ®). A data driven model is built using the design of experiment (DOE) and various approximation methods in Optimus ®. The model can later be combined with a reduced model of the thermal battery system. The assumption and simplification introduced in this paper enable an accurate representation of the cooling plate with a real-time applicable model.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

A Study on the Planning of Urban Energy Supply Systems Including Co-generation System (도시지역 에너지 공급체계 개선방안 검토 연구)

  • Woo, Nam-Sub;Lee, Tae-Won;Kim, Yong-Ki
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.177-182
    • /
    • 2009
  • The purpose of this study is to investigate planning of urban energy supply systems configuration and operating conditions for the district heating and cooling system using combined heat and power system. Generally the district heating and cooling system has been known to one of the effective way for energy saving, cost reduction and demand side management of energy. Economical analyses were carried out and operating characteristics for some systems were examined in terms of GER factor which represents to the ratio of gas and electricity costs. Rates of the energy consumption and the $CO_2$ emission were compared from the system configuration of the energy supply system with new district cooling system with the conventional one.

  • PDF