• Title/Summary/Keyword: Combined bearing

Search Result 273, Processing Time 0.024 seconds

Rotational Characteristics of High Precision Spindle Unit with Ball-Hydrostatic Bearing (볼-유정압 복합베어링을 갖는 고정밀 주축의 회전특성에 관한 연구)

  • 이찬홍;이후상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.663-667
    • /
    • 2000
  • The spindle unit is core parts in high precision machine tools. Diverse static and dynamic charateristics of spindle unit are needed for special purpose of machine tools. Specially, high damping ability may be very useful to high precision and high speed spindle unit. But commercial bearing system has very low damping value and high stiffness. In this paper, the combined bearing system with ball-hydrostatic bearing is suggested for high damping spindle unit. The suggested bearing system has 30% damping ability more than general ball bearing's. The average rotational accuracy of spindle with combined bearing in working speed is 24% better than with ball bearing. The unbalance rotating experiment in spindle show that rotating error with combined bearing is only half value of with ball bearing.

  • PDF

Analysis of an Electromagnetically Biased Combined Radial and Axial Magnetic Bearing (전자석 바이어스 반경방향-축방향 일체형 자기베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1038-1045
    • /
    • 2010
  • The theory for a new electromagnetically biased combined radial and axial magnetic bearing is developed. This combined magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. One dimensional magnetic circuit model for this combined magnetic bearing is developed and analyzed such that flux densities and magnetic forces can be obtained. Three dimensional finite element model for the bearing is also developed and analyzed. Numerical analysis shows that the calculated magnetic forces from 1D model are well matched with those from the finite element model.

Analysis of an Electromagnet Biased Diskless Integrated Radial and Axial Magnetic Bearing (전자석 바이어스 Diskless반경방향-축방향 일체형 자기 베어링 해석)

  • Na, Uhn-Joo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.959-967
    • /
    • 2012
  • The theory for a new electromagnetically biased diskless combined radial and axial magnetic bearing is developed. A typical magnetic bearing system is composed of two radial magnetic bearings and an axial magnetic bearing. The axial magnetic bearing with a large axial disk usually limits rotor dynamic performance and makes assembling and disassembling difficult for maintenance work. This paper proposes a novel electromagnet biased integrated radial-axial magnetic bearing without axial disk. This integrated magnetic bearing uses two axial coils to provide the bias flux to the radial and axial air gaps of the combined bearing. The axial magnetic bearing unit in this combined magnetic bearing utilizes reluctance forces developed in the non-uniform air gaps such that the axial disk can be removed from the bearing unit. The 4-pole homopolar type radial magnetic bearing unit is also designed and analyzed. Three dimensional finite element model for the bearing is also developed and analyzed to illustrate the diskless combined magnetic bearing.

A Combined Bearing Arrangement for High Damping Spindle Systems (고감쇠 주축 시스템을 위한 베어링의 복합배열에 관한 연구)

  • Lee, C.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.139-145
    • /
    • 1996
  • The machining accuracy and performance is largely influenced by the static, dynamic and thermal characteristics of spindle systems in machine tools, because the spindle system is a intermedium for cutting force from tool and machine powef from motor. Large cutting force and power are transmitted by bearing with a point or line contact. So, the spindle system is the static and dynamic weakest point in machine structure. For improvement of static stiffness of spindle system can be changed design parameters, such as diameter of spindle, stiffness of bearing and bearing span. But for dynamic stiffness, the change of the design parameters are not useful. In this paper, the combined bearing arrangement is suggested for high damping spindle system. The combined bearing arrangement is composed of tandem double back to back arrangement type ball bearins and a high damping hydrostatic bearing. The variation of static deflection and amplitude in first natural frequency is evaluated with the location of hydrostatic bearing between front and rear ball bearing. The optimized location of hydrostatic bearing for high static and dynamic stiffness is determined rapidly and exactly using the mode shape and transfer function of spindle. The calculation of damping effect on vibration by unbalance of grinding wheel and pulley in optimized spindle system is carried out to verify the validity of the combined bearing arrangement. Finally, the simulation of grinding process show that the surface roughness of workpiece with high damping spindle system is 60% better than with ball bearing spindle system.

  • PDF

Bearing capacity of strip footings on unsaturated soils under combined loading using LEM

  • Afsharpour, Siavash;Payan, Meghdad;Chenari, Reza Jamshidi;Ahmadi, Hadi;Fathipour, Hessam
    • Geomechanics and Engineering
    • /
    • v.31 no.2
    • /
    • pp.223-235
    • /
    • 2022
  • Bearing capacity of shallow foundations is often determined for either dry or saturated soils. In some occasions, foundations may be subjected to external loading which is inclined and/or eccentric. In this study, the ultimate bearing capacity of shallow foundations resting on partially saturated coarse-grained cohesionless and fine-grained cohesive soils subjected to a wide range of combined vertical (V) - horizontal (H) - moment (M) loadings is rigorously evaluated using the well-established limit equilibrium method. The unified effective stress approach as well as the suction stress concept is effectively adopted so as to simulate the behaviour of the underlying unsaturated soil medium. In order to obtain the bearing capacity, four equilibrium equations are solved by adopting Coulomb failure mechanism and Bishop effective stress concept and also considering a linear variation of the induced matric suction beneath the foundation. The general failure loci of the shallow foundations resting on unsaturated soils at different hydraulic conditions are presented in V - H - M spaces. The results indicate that the matric suction has a marked influence on the bearing capacity of shallow foundations. In addition, the effect of induced suction on the ultimate bearing capacity of obliquely-loaded foundations is more pronounced than that of the eccentrically-loaded footings.

A Clinical Study on Effectiveness of Acupuncture Treatment of Acute Ankle Sprain Combined with Positional Release Therapy (자세이완치료를 병용한 침구치료가 급성기 족관절 염좌의 치료에 미치는 영향에 대한 임상적 연구)

  • Jeong, Da-Un;Yeo, Kyeong-Chan;Yoon, In-Ae;Moon, Sung-Il
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.4 no.1
    • /
    • pp.19-29
    • /
    • 2009
  • Objectives: The purpose of this study is to evaluate the therapeutic effect of acupuncture treatment of acute ankle sprain combined with positional release therapy. Methods: A prospective randomized single blind study between positional release group and knee flexed supine position group was conducted. Patients with ankle sprain within 48 hours were evaluated by Ankle injury grade chart(AIGC). In group A, positional release therapy was combined with acupuncture, whereas in group B, acupuncture was conducted in knee flexed supine position. The treatment was planned for a duration of 1 week, 3times a week. In AIGC scores, VAS, weight bearing time and weight bearing time in blind were followed up and compared. Results and Conclusion: The VAS score decreased in both group. Weight bearing time increased in group B, weight bearing time in blind increased in group A. Comparing the therapeutic effect of each group, group A had significant effectiveness in weight bearing time in blind. So we may conclude that Acupuncture treatment combined with positional release therapy is effective and recommandable at early stage of ankle sprain.

  • PDF

Multi-Objective Optimization of Rotor-Bearing System with dynamic Constraints Using IGA

  • Choi, Byung-Gun;Yang, Bo-Suk;Jun, Yeo-Dong
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.403-410
    • /
    • 1998
  • An immune system has powerful abilities such as memory recognition and learning how to respond to invading antigens, and has been applied to many engineering algorithms in recent year. In this paper, the combined optimization algorithm (Immune-Genetic Algorithm: IGA) is proposed for multi-optimization problems by introduction the capability of the immune system that controls the proliferation of clones to the genetic algorithm. The new combined algorithm is applied to minimize the total weight of the rotor shaft and the transmitted forces at the bearings in order to demonstrate the merit of the combined algorithm. The inner diameter of the shaft and the bearing stiffness are chosen as the design variables. the results show that the combined algorithm can reduce both the weight of the shaft and the transmitted forces at the bearing with dynamic constraints.

  • PDF

A LSTM-based method for intelligent prediction on mechanical response of precast nodular piles

  • Chen, Xiao-Xiao;Zhan, Chang-Sheng;Lu, Sheng-Liang
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.209-219
    • /
    • 2022
  • The determination for bearing capacity of precast nodular piles is conventionally time-consuming and high-cost by using numerous experiments and empirical methods. This study proposes an intelligent method to evaluate the bearing capacity and shaft resistance of the nodular piles with high efficiency based on long short-term memory (LSTM) approach. A series of field tests are first designed to measure the axial force, shaft resistance and displacement of the combined nodular piles under different loadings, in comparison with the single pre-stressed high-strength concrete piles. The test results confirm that the combined nodular piles could provide larger ultimate bearing capacity (more than 100%) than the single pre-stressed high-strength concrete piles. Both the LSTM-based method and empirical methods are used to calculate the shift resistance of the combined nodular piles. The results show that the LSTM-based method has a high-precision estimation on shaft resistance, not only for the ultimate load but also for the working load.

Safety Evaluation of the Combined Load for Offshore Wind Turbine Suction Foundation Installed on Sandy Soil (사질토 지반에 위치한 해상풍력발전기 석션기초의 복합하중에 대한 안전성 평가)

  • Park, Jeong Seon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.195-202
    • /
    • 2021
  • Offshore wind turbine (OWT) receive a combined vertical-horizontal- moment load by wind, waves, and the structure's own weight. In this study, the bearing capacity for the combined load of the suction foundation of OWT installed on the sandy soil was calculated by finite element analysis. In addition, the stress state of the soil around the suction foundation was analyzed in detail under the condition that a combined load was applied. Based on the results of the analyses, new equations are proposed to calculate the horizontal and moment bearing capacities as well as to define the capacity envelopes under general combined loads.

Development of Hot and Cold Combined Forging Process for a One-Way Clutch Bearing Outer Race (원웨이 클러치 베어링 외륜의 열간과 냉간 복합단조 공정 기술 개발)

  • Jang, S.J.;Jun, B.Y.;Jang, S.M.;Joun, M.S.;Moon, H.K.;Sung, H.S.;Heo, M.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.441-444
    • /
    • 2009
  • In this research, a hot and cold combined forging process for manufacturing net-shape one-way clutch bearing outer race of an automobile automatic transmission unit is developed. The process is composed of hot forging for manufacturing an optimized gear-like perform and precision cold forging for sizing the perform into final net-shape product. Finite element simulation techniques are applied to find the optimized process designs including blank and die shapes. The predictions and experiments are compared, revealing that they are in good agreement with each other. The dimensional test showed that the important dimensional requirements on gear tooth-like shape of the forged product were fulfilled.

  • PDF