• Title/Summary/Keyword: Combined Wastewater Treatment

Search Result 168, Processing Time 0.025 seconds

Pilot Study on the Advanced Treatment of Combined Wastewater with Sewage as a Cosubstrate (가정하수를 cosubstrate로서 사용한 하수-염색폐수-공장폐수의 합병 고도처리 pilot plant 연구)

  • Kim, Mee-Kyung;Seo, Sang-Jun;Rhew, Doug-Hee;Jung, Dong-Il
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.227-234
    • /
    • 2009
  • In this research, a retrofitting process, which consists of a pretreatment system (coagulation) for dye wastewater combined with a biological nutrient system (MLE process using media), for a sewage treatment plant that has to treat dye wastewater efficiently with domestic wastewater were developed and a pilot plant was operated for verifying adoptability and performance of the developed advanced process for dye wastewater. From the results of the pilot plant operation, BOD 52.9%, $COD_{Cr}$ 55.9%, and color 71.3% were removed in pretreatment of coagulation process and the biodegradability of dye wastewater was improved to $0.32{\sim}0.59BOD/COD_{Cr}$ of the coagulated wastewater from $0.29{\sim}0.43BOD/COD_{Cr}$ of the raw dye wastewater. The final effluent concentrations were BOD of 8 mg/L, $COD_{Cr}$ of 43 mg/L, $COD_{Mn}$ of 18 mg/L, T-N of 8 mg/L, and T-P of 1.3 mg/L, respectively. Color was removed from 1655 to 468 unit by coagulation and then to 123 unit by MLE process. The HPLC analysis of aromatic amines in wastewater showed that decolorization was achieved by cometabolism while aromatic amines were produced by cleavage of azo bonds under anaerobic conditions and these products were removed in an aerobic tank subsequently. Nitrification rates of attached and suspended microorganisms were evaluated comparatively and the acclimating conditions of bacteria on media were validated by the scanning electron microscope.

Livestock Wastewater Treatment by Zeolite Ion Exchange and Gamma-ray Irradiation (제올라이트와 감마선을 이용한 축산 폐수 처리)

  • Lee, Sang-Ryul;Kim, Tak-Hyun;Lee, Myun-joo
    • Journal of Radiation Industry
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Livestock wastewater containing high concentrations of organic matters and ammonia-nitrogen has been known as one of the recalcitrant wastewater. It is difficult to treat by conventional wastewater treatment techniques. This study was carried out to evaluate the feasibility of zeolite ion exchange and gamma-ray irradiation treatment of livestock wastewater. The removal efficiencies of $SCOD_{Cr}$ and $NH_3-N$ were significantly enhanced by gamma-ray irradiation after zeolite ion exchange as a pre-treatment. However, the effects of zeolite particle size on the $SCOD_{Cr}$ and $NH_3-N$ removal efficiencies were insignificant. These results indicate that the combined process of zeolite ion exchange and gamma-ray irradiation has potential for the treatment of livestock wastewater.

Electrooxidation of tannery wastewater with continuous flow system: Role of electrode materials

  • Tien, Tran Tan;Luu, Tran Le
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.324-334
    • /
    • 2020
  • Tannery wastewater is known to contain high concentrations of organic compounds, pathogens, and other toxic inorganic elements such as heavy metals, nitrogen, sulfur, etc. Biological methods such as aerobic and anaerobic processes are unsuitable for tannery wastewater treatment due to its high salinity, and electrochemical oxidation offers a promising method to solve this problem. In this study, raw tannery wastewater treatment using DSA® Ti/RuO2, Ti/IrO2 and Ti/BDD electrodes with continuous flow systems was examined. Effects of current densities and electrolysis times were investigated, to evaluate the process performance and energy consumption. The results showed that a Ti/BDD electrode is able to reach higher treatment efficiency than Ti/IrO2, and Ti/RuO2 electrodes across all parameters, excluding Total Nitrogen. The main mechanism of tannery wastewater oxidation at a Ti/BDD electrode is based on direct oxidation on the electrode surface combined with the generation of oxidants such as °OH and Cl2, while at DSA® Ti/RuO2 and Ti/IrO2 electrodes, the oxidation mechanisms are based on the generation of chlorine. After treatment, the effluents can be discharged to the environment after 6-12 h of electrolysis. Electrooxidation thus offers a promising method for removing the nutrients and non-biodegradable organic compounds in tannery wastewater.

Performance evaluation of nitrate removal in high TDS wet scrubber wastewater by ion exchange resin with dissolved air flotation (DAF) process

  • Kim, Bongchul;Yeo, Inseol;Park, Chan-gyu
    • Membrane and Water Treatment
    • /
    • v.13 no.1
    • /
    • pp.1-6
    • /
    • 2022
  • The regulations of the International Maritime Organization (IMO) have been steadily strengthened in ship emissions. Accordingly, there is a growing need for development of related technologies for the removal of contaminants that may occur during the treatment of SOx and NOx using a wet scrubber. However, this system also leads to wastewater production when the exhaust gas is scrubbed. In this research, we evaluated the performance of an ion selective resin process in accordance with scrubber wastewater discharge regulations, specifically nitrate discharge, by the IMO. Accelerated real and synthetic wastewater of wet scrubbers, contained high amounts of TDS with high nitrate, is used as feed water in lab scale systems. Furthermore, a pilot scale dissolved air flotation (DAF) using microbubble generator with ion exchange resin process was combined and developed in order to apply for the treatment of wet scrubber wastewater. The results of the present study revealed that operating conditions, such as resin property, bed volume (BV), and inlet wastewater flow rate, significantly affect the removal performance. Finally, through a pilot test, DAF with ion exchange resin process showed a noticeable improvement of the nitrate removal rate compared to the single DAF process.

Feasibility Study on the Treatment of Food Waste Leachate in Municipal Wastewater Treatment Facility - Case of P city - (음폐수 공공하수처리시설 연계처리 타당성 평가 - P시 사례 -)

  • Park, Jong-Hun;Kang, Shin-Young;Kim, Sang-Hyoun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • P city government considers to treat a part of food waste leachate in a municipal wastewater treatment plant (MWWTP), as the capacity of an existing combined treatment plant for food waste leachate is lower than the generation of food waste leachate in the city. Furthermore, the combined treatment plant also treats landfill leachate and directly discharges the effluent to the sea, which may result in a potential environmental problem. Therefore, this study examined the feasibility of the addition of food waste leachate and the effluent of the combined treatment facility on the MWWTP. Acceptable addition amount of the food waste streams, increased pollution loading on the MWWTP, and the treatment cost were estimated according to four scenarios. All the scenarios estimated that the MWWTP would receive most of the food waste streams according to the manual of the ministry of environment with little increase of pollution loading.

Reusing of Dye Wastewater through Combined Membrane Process (조합형 분리막 공정을 이용한 염색폐수의 재이용 연구)

  • 박헌휘;최호상
    • Membrane Journal
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2002
  • Submerged membrane bioreactor(SMBR) and reverse osmosis(R/O) systems treated dye wastewater for reusing of industrial water. The permeate fluxes of SMBR at 20-25 cmHg of lab. test and field test were 10 LMH($1/m^2$.hr) all test. Removal efficiencies of CODcr, $COD_{Mn}$ and T-N were 93%, 90% and 60% in the SMBR, respectively The advanced treatment of combined process(SMBR+R/0) was accomplished for increasing the removal efficiency of non-biodegradable materials and T-N. Therefore, the removal efficiency of T-N obtained in 80% above, then nitrogen concentration was under 15 mg/L. The combined process(SMBR+R/0) was suitable to reuse of the dye wastewater.

Decomposition of Humic Acid and Reduction of THM Formation Potential by Ozone and Combined Ozone/Ultraviolet Oxidation (오존 및 오존/UV 산화법을 이용한 휴믹산의 분해와 THM 발생능의 감소)

  • Park, Ju-Seok;Park, Tae-Jin;Kwon, Bong-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.10 no.4
    • /
    • pp.55-63
    • /
    • 1996
  • This research was based on comparing ozonation with combined ozone/ultraviolet oxidation through the methods of reducing THM produced during water treatment. The results were as follows ; 1. The decline of THM concentration was appeared according as ozone dosage increases with ozonation and combined ozone/ultraviolet oxidation. The more effective method was the treatment of irradiating UV then ozonation. In the beginning of reaction the decline rate of THM formation potential was low, I thought it was because that the reaction of ozone and humic acid needed times to be steady state, or that THM formation potential existed according to humic acid. 2. The effect of combined ozone/ultraviolet oxidation when ozone dosage was 4.2mg/L min was almost the same that of ozonation when ozone dosage was 8.6mg/L min. 3. In experiment of TOC decline through ozonation and combined ozone/ultraviolet oxidation, TOC concentration was also dropped according to increasing ozone dosage and the more effective results were showed in treatment of irradiating UV than ozonation. But the similar TOC remove rates were showed in experiment of changing with ozone dosage during combined ozone/ultraviolet oxidation TOC remove rates were low in proportion to the remove rates of THM formation potential, it was considered that humic acid was made low molecule itself though ozonation and ozone/ultraviolet oxidation. Moreover, the high degree of remove efficiency will be get though the treatment of activated carbon of GAC treatment after combined ozone/ultravilet oxidation.

  • PDF

Comparison of Sewage Sludge Solubilization through Different Pretreatment Methods (전처리 방법에 따른 하수슬러지 가용화 비교연구)

  • Kwon, Jae-Hyun;Kim, Bong-Jun;Kim, Min-Kyu;Yeom, Ick-Tae;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.17 no.4
    • /
    • pp.567-573
    • /
    • 2003
  • The pretreatment process was carried out to solubilize the sewage sludge for enhancing its biodegradability using alkaline treatment, ultrasonic treatment(15kHz), ozone treatment and different combination of these three methods: alkaline followed by ultrasonic as well as ozone, and ultrasonic followed by alkaline. The solubilization efficiency was evaluated based on the SCOD/TCOD ratio and VSS/TS ratio. In results, the proper condition of alkaline treatment was shown as 30meq/l of NaOH, pH 12 and 3hours of reaction time. Solubilization efficiency increased to 17% from initial 2% based on SCOD/TCOD ratio under this condition. In ultrasonic treatment, the higher ultrasonic power, the longer treatment time and the lower sludge volume resulted in higher solubilization respectively. There was a rapid increase in solubilization efficiency after 20 minute, then it was measured as 32% of SCOD/TCOD ratio in 1 hour at a ultrasonic power of 1,300W with 1/sludge. Solubilization efficiencies in combined treatment using alkaline and ultrasonic were 47-53% higher than single treatment at a sonicated time of 1 hour. Ozone treatment followed by alkaline treatment also represented the enhanced solubilization compared to ozone treatment. Therefore, ultrasonic or ozone treatment assisted by alkaline could achieve the short treatment time as well as high solubilizetion efficiency.

A Study on the Advanced Treatment of Wastewater by Plants (식물을 이용한 오수의 고도처리에 관한 연구)

  • 이용두;김현희
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.75-81
    • /
    • 1999
  • In recent years increasing production and disposal of wastewater have caused an accelerated eutrophication of receiving waters. Therefore, in order to alleviate the detrimental impact of wastewater discharge, there is an increasing demand for removing the main nutrients, nitrogen and phosphorus, as well as the organic content of the waste water prior to disposal. This is effectively achieved by extended conventional treatment technology. However, the working expenses and energy requirements of such advanced treatment systems are rather high. So in a sparsely populated rural community is required development of wastewater treatment system combined with the regional characteristics. In this study, the systems are planted with Reeds and Amaryllis In A.C and estimated purification potential of system. The results obtained are as follows. BOD removal rate is 20% in the early stage, the last removal rate is 35% in A.C process and is 65% in Amaryllis+A.C process and is 50% in Reed+A.C process. T-N removal rate by Amaryllis is average 2.6g/$m^3$ㆍd, T-N removal rate by Reed is average 1.76g/$m^3$ㆍd. T-P removal rate by Amaryllis is average 0.27g/$m^3$ㆍd, T-P removal rate by Reed is average 0.25g/$m^3$ㆍd. BOD removal rate constant with retention time is 1.4494(1/d), T-N removal rate constant is 0.5428(1/d), T-P removal rate constant is 0.5287(1/d).

  • PDF