• Title/Summary/Keyword: Combined Wastewater Treatment

Search Result 168, Processing Time 0.029 seconds

Effect of Water-Hardness in the Biological Wastewater-treatment (생물학적 폐수처리시 수질 경도에 따른 처리효과 연구)

  • Park Young G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.3 s.53
    • /
    • pp.58-64
    • /
    • 2004
  • Biological treatment of wastewater was studied with a purpose to remove TOC by the reduction of water hardness. The optimal conditions of coagulant were determined by reaction time and amount of coagulant. Experimental results indicate that the biological treatment after physico-chemical treatment was found to provide very efficient removal efficiency in the process to treat the textile wastewater, including the carbon dioxide treatment. The combined process of carbonization in the physico-chemical treatment respectively was increased the removal efficiencies of $30.0\%$ in biological treatment in comparison with exclusive biological treatment. As a result, the treatment of hardness after carbonization had the best removal efficiency of approximately $60.0\%$. The removal efficiencies in the exclusive biological treatment using Bacillus subtilis and after carbonization were increased by $38.9\%\;and\;69.0\%$ respectively. The combined Bacillus subtilis-assisted biological treatment was determined to be the most effective method to treat the textile wastewater in an economic point of view, the water quality in the wastewater treatment plays an important role.

The effect of Combined Sewer Overflows on river's water quality

  • Bae, Hun Kyun
    • Membrane and Water Treatment
    • /
    • v.11 no.1
    • /
    • pp.49-57
    • /
    • 2020
  • The effect of Combined Sewer Overflow on the river system was investigated throughout three preliminary field tests and three main ones. As a result of the study, Combined Sewer Overflow did not affect water qualities on the main stream since the concentration of the main stream did not significantly changed during rainfall events although the water quality of tributaries has rapidly deteriorated due to the influence of the Combined Sewer Overflow during rainfall events. The main cause of the result is that the flow rate of the tributaries is considerably lower than that of the main stream, so that the tributaries with deteriorated water quality during rainfall events did not significantly affect the quality of the actual main stream. Therefore, the water quality of the Kumho River is more affected by the wastewater treatment facilities that discharges water continuously to the main stream than pollutants from non-point pollution sources during rainfall events. As a result, managements for discharges from wastewater treatment facilities should be strengthened in order to improve the water quality of the river.

An experimental study on decision making for multi-source water (다중수원 수처리 의사결정에 관한 실험적 연구)

  • Jung, Jungwoo;Cho, Hyeong-Rak;Lee, Sangho;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • A combined treatment system using multiple source water is becoming important as an alternative to conventional water supply for small-scale water systems. In this research, combined water treatment systems were investigated for simultaneous use of multi-source water including rainwater, ground water, river water, and reclaimed wastewater. A laboratory-scale system was developed to systematically compare various combinations of water treatment processes, including sand filtration, microfiltration (MF), granular activated carbon (GAC), and nanofiltration (NF). Results showed that the efficiency of combined water treatment systems was affected by the quality of feed waters. In addition, a simply approach based on the concept of linear combination was suggested to support a decision-making for the optimum water treatment systems with the consideration of final water quality.

A study on characteristics of influent and effluent pollutants in public sewage treatment works combined with industrial wastewater and landfill leachate (공공하수처리시설에서 수질오염물질 유입 및 배출 특성 고찰 - 산업폐수 및 매립지 침출수 연계처리 시설을 중심으로 -)

  • Jeong, Dong-Hwan;Cho, Yangseok;Ahn, Kyung-Hee;Kim, Eunseok;Kim, Changsoo;Chung, Hyen-Mi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.6
    • /
    • pp.673-682
    • /
    • 2016
  • In this study, we investigated influent and effluent water pollutants in 53 Public Sewage Treatment Works (PSTWs) where industrial wastewater or landfill leachate is combined four times for two years from 2014 to 2015. Also, we analyzed the characteristics of heavy metals and volatile organic carbons at influent and effluent of these PSTWs caused by sewage treatment combined with industrial wastewater or landfill leachate. As a result, six heavy metals such as barium, copper, iron, manganese, nickel and zinc, and four volatile organic carbons (VOCs) including phenols, di(2-)ethylhexyl phthalate (DEHP), formaldehyde and toluene were observed above detection limits in most of PSTWs. Also, it was revealed that six heavy metals such as hexavalent chromium, mercury, cadmium, chromium, nickel and selenium, and four VOCs including 1,1-dichloroethylene, vinyl chloride, naphthalene, and epichlorohydrin were observed more frequently according to precipitation. As a result of reviewing the monitoring data on "Water Quality Monitoring Networks" in lower watersheds of PSTWs, both heavy metals and VOCs were below detection limits, indicating that the effluent water had little influence on the watershed. Nevertheless for the better management of influent and effluent pollutants in PSTWs, it is necessary to establish the advanced management plans for water pollutants in PSTWs, which include a list of priority substances management, monitoring plans, and guidelines for industrial wastewater and landfill leachate combined in PSTWs.

Size Estimation of Microalgal System for Nitrogen Removal (미세조류를 이용한 질소제거 장치의 크기)

  • 김한욱;이우성;이철균
    • KSBB Journal
    • /
    • v.19 no.3
    • /
    • pp.236-240
    • /
    • 2004
  • Korean wastewaters have higher nitrogen concentrations than typical wastewaters of other countries. Most treatment processes such as activated sludge processes will need to supplement extra carbon sources for a complete removal of remaining nitrogen after the initial wastewater treatment, Because of these difficult matters, we have searched wastewater treatment methods that require no additional carbon sources. Wastewater treatment by microalgae in photobioreactors, using a green eukaryotic microalgae, Chlorella kessleri, showed a promising results and thus was selected to study further. This system is not intended to replace the conventional system but is to assist the existing biological treatment systems as a supplemental nitrogen removal process. Thus the secondary treated livestock wastewater was tested. Column type photobioreactors developed in our laboratory were used. When aerated with 5% CO$_2$ balanced with air at 1 vvm and illuminated at 100 ${\mu}$mol/㎡/s under 25$^{\circ}C$ and PH 7-8 by CO$_2$ buffering effect, the maximum nitrogen removal rate was 2.6 mg/L/hr. The results confirmed a possibility of microalgal wastewater treatment system as a secondary system to remove extra nitrogen sources. Based on these experimental results, the size of the optimal microalgal wastewater system was calculated. For the wastewater whose initial nitrogen concentration of 150 mg/L, the optimal batch system was found to be a 2 stage system with a combined retention time of 4.6 day. From the continuous experiments, nitrogen removal rates were examined under different dilution rates and 2 stage system was also found to be the optimal system. The combined retention time for the continuous system was 3.5 days. It is expected that conventional biological wastewater treatment systems followed by microalgal systems would reliably decrease the nitrogen concentration below the government criteria even for the livestock wastewater with low C/N ratio.

Toxicity Reduction of Wastewater from a Rubber Products Manufacturing Factory by Gamma-ray Treatment (감마선 처리를 이용한 고무공장 폐수의 생물독성 저감)

  • Park, Eun-Joo;Jo, Hun-Je;Cho, Kijong;Kim, Jeong-Gyu;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.913-918
    • /
    • 2006
  • Both raw wastewater and effluent from a rubber products manufacturing factory were found to be toxic to Daphnia magna though the effluent satisfied current water quality standards. Thus, in order to reduce toxicity, advanced oxidation processes (AOPs) such as gamma-ray (${\gamma}-ray$) treatment and ozonation ($O_3$) were applied. A combined ${\gamma}-rays/O_3$ treatment at 20 kGy after coagulation significantly reduced toxicity of raw wastewater, changing 48-h toxic unit (TU) value from 201.21 to 23.92. However, toxicity of treated water was higher than that of effluent (TU = 12.15). This shows limitation of gamma-ray treatment to remove toxicity of raw wastewater. In case of effluent, the combined ${\gamma}-rays/O_3$ treatment at 20 kGy efficiently decomposed toxic compounds down to non toxic level. This work strongly supports the necessity of toxicity reduction evaluation as well as toxicity-based effluent management.

Study of wastewater-treatment's efficiency using Bacillus subtilis: with an effect of ozonation (Bacillus subtilis를 이용한 폐수처리 효과연구: 오존의 영향을 중심으로)

  • 박영규
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.4
    • /
    • pp.29-38
    • /
    • 2002
  • Advanced oxidation of wastewater was studied with a purpose to remove TOC and color by the ozone-assisted Fenton reaction. The optimal conditions were determined by hydrogen peroxide and ozone concentrations. Experimental results indicate that the ozone treatment after Fentons process was found to provide very efficient removal efficiency in the process, avoiding the exclusive ozone treatment. The combined process of ozone in the Fenton oxidation respectively was increased removal efficiences of 10.7% in comparison with exclusive Fenton oxidation. Also, the treatments of ozone after Fenton's oxidation respectively had increased the removal efficiences of 16.%. As a result, the treatment of ozone after Fentons oxidation had the best removal efficiency of approximately 96%. Removal efficiency of color was significantly increased as mush as 26% by the advanced Fenton's oxidation in comparison with exclusive Fenton's oxidation. The removal efficiencies in the biological treatment using Bacillus subtilis after Fenton's oxidation and after Fenton's and ozone's oxidation were increased by 14% and 19% respectively. Although these combined Bacillus subtilis-assisted Fenton's oxidation was determined to be effective method to treat the dyeing wastewater in an economic point of view, the choice of wastewater treatment can be varied depending on water quality.

Economical Assessment of Wastewater Treatment Facilities in Leather Tanning and Finishing Industry (가죽, 모피 가공 및 제조업 폐수처리시설의 경제성 평가)

  • Kim, Jaehoon;Yang, Hyung jae;Kwon, Oh sang;Lee, Sung jong
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.131-137
    • /
    • 2007
  • Industrial wastewater management guideline and evaluation model of Best Available Technologies for the leather tanning and finishing industry was developed as an economical evaluation model using evaluation of BAT including economical evaluation combined with cost analysis model and cost annualization model in considering of economical factors and non-water environmental factors. It was verified that approximately 10% will be increased annually to modify conventional treatment process ($3,700m^3/d$) of J leather wastewater treatment plant to advanced process of K leather wastewater treatment plant.

Anaerobic-aerobic granular system for high-strength wastewater treatment in lagoons

  • Hamza, Rania A.;Iorhemen, Oliver T.;Tay, Joo H.
    • Advances in environmental research
    • /
    • v.5 no.3
    • /
    • pp.169-178
    • /
    • 2016
  • This study aimed at determining the treatability of high-strength wastewater (chemical oxygen demand, COD>4000 mg/L) using combined anaerobic-aerobic granular sludge in lagoon systems. The lagoon systems were simulated in laboratory-scale aerated and non-aerated batch processes inoculated with dried granular microorganisms at a dose of 0.4 g/L. In the anaerobic batch, a removal efficiency of 25% was not attained until the 12th day. It took 14 days of aerobic operation to achieve sCOD removal efficiency of 94% at COD:N:P of 100:4:1. The best removal efficiency of sCOD (96%) was achieved in the sequential anaerobic-aerobic batch of 12 days and 2 days, respectively at COD:N:P ratio of 200:4:1. Sequential anaerobic-aerobic treatment can achieve efficient and cost effective treatment for high-strength wastewater in lagoon systems.

Development of Combined Septic Tank for Middle-Small Scale Sewage Treatment (중·소규모 생활오수 처리를 위한 합병정화조 개발)

  • Rim, Jay-Myoung;Han, Dong-Joon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.73-77
    • /
    • 1997
  • This study aims to develop the combined septic tank for middle-small scale sewage treatment. The developed process were circular and separate type. The circular combined septic tank was controlled sludge discharge and could be modified the advanced treatment system. The separate combined septic tank was could be applicated wastewater that discharge flow was varied, and was could be maintained F/M ratio constantly. The optimum hydraulic retention time was about 16 hours.

  • PDF