• Title/Summary/Keyword: Combined Reforming

Search Result 33, Processing Time 0.019 seconds

Numerical analysis of the gas flow-rate uniformity in the anode flow channel of indirect internal reforming molten carbonate fuel cell (MCFC) under different pressure drop and temperature conditions (간접 내부 개질형 용융탄산염 연료전지 anode 채널에서의 압력 강하 및 온도 조건 변경에 따른 유량 균일도에 관한 수치 해석적 연구)

  • Cho, Jun-Hyun;Ha, Tae-Hun;Kim, Han-Sang;Min, Kyoung-Doug;Park, Jong-Hoon;Chang, In-Gab;Lee, Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.127-130
    • /
    • 2009
  • The uniform gas distribution between anode channels of the indirect internal reforming type molten carbonate fuel cell (MCFC) is crucial design parameter because of the electric performance and the durability problems. A three-dimensional computational fluid dynamics (CFD) analysis is performed to investigate flow characteristics in the anode channels and manifold under different pressure drop and channel temperature conditions. The combined meshes consists of hexadral meshes in the channels and polyhedral meshes in the manifold are adopted and chemical reactions inside the MCFC system are not included because of computational difficulties associated with the size and geometric complexity of the system. Results indicate that the uniformity in flow-rate is in the range of $\pm$ 0.048 % between the anode channels when the pressure drop of anode channel is about 150 Pa. A gas flow-rate uniformity decreases as the pressure drop of anode channels decreases and as the temperature difference between indirect internal reforming (IIR) channels and anode channels increases.

  • PDF

Status for the Technology of Hydrogen Production from Natural Gas (천연가스를 이용한 수소 제조 기술 현황)

  • Bak, Young-Cheol;Cho, Kwang-Ju
    • Korean Chemical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.344-351
    • /
    • 2005
  • Hydrogen energy will be considered one of the most important energy carries for the future not only as raw material of petroleum chemical industry but also as the fuel of the fuel cell. The hydrogen production based upon the water electrolysis system combined renewable energy or atomic power energy is being watched as long-term hydrogen sources. Hydrogen from fossil fuel, especially natural gas steam reforming, is the economical mass production method at this time. But the cost of $CO_2$ reduction is added in the economic analysis of hydrogen production processes. Therefore many different results are suggested from these analyses about old processes, and modified schemes are studying for the efficient development. In this review, status for the technology of hydrogen production from natural gas are summarized.

Ce addition into Ni/$MgAl_2O_4$ catalysts in combined $H_2O$ and $CO_2$ reforming of $CH_4$ for improvement of coke resistance (수증기-이산화탄소 복합개질 반응에서 Ce가 증진된 Ni-Ce/$MgAl_2O_4$ 촉매의 탄소 침적저항성 향상에 관한 연구)

  • Lee, Sung-Hun;Koo, Kee-Young;Jung, Un-Ho;Roh, Hyun-Seog;Lee, Deuk-Ki;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.226.1-226.1
    • /
    • 2010
  • 본연구에서는 GTL(gas to liquids)공정의 합성가스 생산을 위해 수증기-이산화탄소 복합개질반응(Combined Steam and Carbon dioxide Reforming of Methane, CSCRM)을 수행하였다. CSCRM은 수증기와 이산화탄소의 공급비 조절을 통해 $H_2$/CO비를 2로 맞추기 용이한 장점을 지니고 있어 다른 단일 개질 반응과 달리 합성가스 생산 시 $H_2$/CO 비율을 조절하기 위한 부가적인 공정이 필요하지 않아 경제적인 공정이다. 일반적으로 사용되는 Ni개질촉매는 가격대비 우수한 성능을 보이지만 S/C비가 낮은 CSCRM의 경우 촉매표면의 탄소침적에 의한 비활성화가 야기되는 문제점이 있다. 따라서 본 연구에서는 산소저장능력과 산소전달능력이 우수한 $CeO_2$를 조촉매로 첨가하여 표면에 형성된 코크 제거가 용이하도록 하였다. Ni-Ce/$MgAl_2O_4$촉매는 동시함침법(co-impregnation)으로 제조하였으며, Ni의 함량을 10wt%로 고정한 상태에서 Ce의 함량을 조절하여 Ce/Ni 최적비를 찾고자 하였다. XRD, TPR, BET, $H_2$-Chemisorption과 같은 촉매의 특성분석을 통해 촉매의 비표면적, 환원특성과 Ni입자의 분산도 등을 확인하였다. Ce를 첨가함에 따라 Ce2.5wt%까지는 비표면적이 증가하다가 이후 점차 줄어드는 경향성을 보였다. 또한, $H_2$-Chemisorption 결과 역시 비표면적과 유사한 경향성을 보였는데, Ce5.0wt%까지 Ni 분산도가 증가 하다가 다시 감소하는 것을 확인할 수 있었다. 반응실험은 $H_2O:CO_2:CH_4:N_2$ = 0.8:0.4:1:1의 공급조건에서 수행하였으며, 질소와 수소 환원분위기로 $700^{\circ}C$에서 1시간 환원 후 $650^{\circ}C$에서 $550^{\circ}C$범위로 온도를 떨어뜨려가면서 반응을 수행하였다. Ce를 첨가함에 따라 $CH_4$ 전환율이 증가를 하다가 Ce2.5wt% 이후 감소하는 것을 확인할 수 있었다. 이러한 높은 촉매 활성은 Ce 첨가로 인해 환원특성이 좋아지고 Ni분산도가 증가하여 담체와 강한 상호작용(SMSI)을 형성함으로 탄소침적 저항성 강화에 기인한 것이다.

  • PDF

A Simulation of the Tubular Packed Bed Reactor for the Steam-CO2 Reforming of Natural Gas (천연가스의 수증기-이산화탄소 복합개질을 위한 충진층 관형반응기의 전산모사)

  • Lee, Deuk-Ki;Koo, Kee-Young;Seo, Dong-Joo;Yoon, Wang-Lai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.73-82
    • /
    • 2012
  • A 2-dimensional heterogeneous reactor model was developed and simulated for a tube reactor of packed bed where the steam-$CO_2$ combined reforming reaction of natural gas proceeded to produce synthesis gas. Under the reactor feeding rate, 45 $Nm^3$/h, of the reactant gas stream, the 2-dimensional heterogeneous reactor model showed the similar results to those from the ASPEN simulator although there were some discrepancies between the two in the temperature and the $H_2$/CO ratio of the reformed gas at the reactor exit. The calculated enthalpy difference between the reformed gas at the reactor exit and the reactant gas fed to the reactor was closely correspondent to the total amount of heat transferred to the reactor interior from the furnace. This supports that the 2-dimensional heterogeneous reactor model was reasonably established and the numerical solution was properly obtained.

Simulation for Possible Coke-Free Operation of a Packed Catalyst Bed Reactor in the Steam-CO2 Reforming of Natural Gas (천연가스의 수증기-이산화탄소 복합개질용 촉매 충진 반응기의 코킹 회피 운전을 위한 모사)

  • LEE, DEUK KI;LEE, SANG SOO;SEO, DONG JOO;YOON, WANG LAI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.445-452
    • /
    • 2015
  • A tubular packed bed reactor for the steam-$CO_2$ combined reforming of natural gas to produce the synthesis gas of a target $H_2/CO$ ratio 2.0 was simulated. The effects of the reactor dimension, the feed gas composition, and the gas feeding temperature upon the possibility of coke formation across the catalyst bed were investigated. For this purpose, 2-dimensional heterogeneous reactor model was used to determine the local gas concentrations and temperatures over the catalyst bed. The thermodynamic potential distribution of coke formation was determined by comparing the extent of reaction with the equilibrium constant given by the reaction, $CH_4+2CO{\Leftrightarrow}3C+2H_2O$. The simulation showed that catalysts packed in the central region nearer the entrance of the reactor were more prone to coking because of the regional characteristics of lower temperature, lower concentration of $H_2O$, and higher concentration of CO. With the higher feeding temperature, the feed gas composition of the increased $H_2O$ and correspondingly decreased $CO_2$, or the decrease in the reactor diameter, the volume fraction of the catalyst bed subsequent to coking could be diminished. Throughout the simulation, reactor dimension and reaction condition for coking-free operation were suggested.

Promotion effect of Ru in Ni-based catalyst for combined $H_{2}O$ and $CO_{2}$ reforming of methane (메탄의 수증기/이산화탄소 복합 개질 반응용 니켈 촉매의 루테늄 증진 효과)

  • Jang, Won-Jin;Seo, Yu-Taek;Roh, Hyun-Seog;Koo, Kee-Young;Seo, Dong-Joo;Seo, Yong-Seog;Rhee, Young-Woo;Yoon, Wang-Lai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.53-56
    • /
    • 2007
  • 미량의 Ru을 증진제로 첨가하여 니켈 촉매의 반응 활성을 증진시킴으로써, 저온 환원성과 장시간 반응에 대한 안정성을 확보하고자 하였다. Ni의 담지량은 12 wt%로 고정하였으며 이에 Ru을 각각 0.1, 0.3, 0.5 wt%로 변화시켜 2차 담지하였다. 메탄의 수증기/이산화탄소 복합 개질 반응에 있어 니켈 촉매에 Ru을 2차 담지 한 촉매는 800 $^{\circ}C$, GHSV(gas hourly space velocity) 265,000 $h^{-1}$ 하에서 100 %에 가까운 $CH_{4}$ 전환율을 보였으며, GHSV 1,060,000 $h^{-1}$ 일 때에도 10시간 동안 90 %의 $CH_{4}$ 전환율을 기록하였다. 또한 이 중 0.3 wt%의 Ru를 담지한 경우가 1,060,000 $h^{-1}$의 조건하에서도 95 %이상으로 가장 높은 $CH_{4}$ 전환율로 유지되었다. $H_{2}-TPR$ 분석 결과, Ni(12)/$MgAl_{2}O_{4}$ 와 비교해 볼 때 Ru(0.5)/Ni(12)/$MgAl_{2}O_{4}$와 Ru(0.3)/Ni(12)/$MgAl_{2}O_{4}$ 촉매의 경우 150 $^{\circ}C$에서 저온 환원이 가능한 $RuO_{2}$의 존재를 확인할 수 있었다.

  • PDF

Feasibility Study of Low NOx Combustion based on FGR using Plasma Reformer (플라즈마를 이용한 FGR 기반 저 NOx 연소 타당성 연구)

  • Kim, Kwan-Tae;Lee, Dae-Hoon;Cha, Min-Suk;Keel, Sang-In;Yun, Jin-Han;Kim, Dong-Hyun;Song, Young-Hoon
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2007
  • A combined hydrogen generator of plasma and catalytic reformer was developed, and was applied to stabilize unstable flame of 200,000 Kcal/hr LPG combustor. The role of the plasma reformer was to generate hydrogen in a short period and to heat-up the catalytic reformer during the start-up time. After the start-up period, the catalytic reformer generates hydrogen through steam reforming with oxygen (SRO) reactions. The maximum capacity of the hydrogen generator was enough 100 lpm to stabilize the flame of the present combustor. In order to reduce NOx and CO emissions simultaneously, 1) FGR (Flue Gas Recirculation) technique has been adopted and 2) the hydrogen was added into the fuel supplied to the combustor. Test results showed that the addition of 25% hydrogen and 30% FGR rate lead to simultaneous decrease of CO and NOx emissions. The technique developed in the present study showed good potential to replace $NH_3$ SCR technique, especially in the small-scale combustor applications.

  • PDF

Exergy and exergoeconomic analysis of hydrogen and power cogeneration using an HTR plant

  • Norouzi, Nima;Talebi, Saeed;Fani, Maryam;Khajehpour, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2753-2760
    • /
    • 2021
  • This paper proposes using sodium-cooled fast reactor technologies for use in hydrogen vapor methane (SMR) modification. Using three independent energy rings in the Russian BN-600 fast reactor, steam is generated in one of the steam-generating cycles with a pressure of 13.1 MPa and a temperature of 505 ℃. The reactor's second energy cycles can increase the gas-steam mixture's temperature to the required amount for efficient correction. The 620 ton/hr 540 ℃ steam generated in this cycle is sufficient to supply a high-temperature synthesis current source (700 ℃), which raises the steam-gas mixture's temperature in the reactor. The proposed technology provides a high rate of hydrogen production (approximately 144.5 ton/hr of standard H2), also up to 25% of the original natural gas, in line with existing SMR technology for preparing and heating steam and gas mixtures will be saved. Also, exergy analysis results show that the plant's efficiency reaches 78.5% using HTR heat for combined hydrogen and power generation.

Development of a Catalyst/Sorbent for Methane-Steam Reforming (메탄스팀개질반응용 촉매흡착제 개발에 관한 연구)

  • Cho, Yong-Hoon;Na, Jeong-Geol;Kim, Seong-Soo;Kim, Jin-Gul;Chung, Soo-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.307-313
    • /
    • 2006
  • In order to improve the efficiency of methane steam reforming process, a part of the system which produces hydrogen from heavy hydrocarbon resources such as coal, we combined metal catalyst with CaO sorbent and fabricated catalyst/sorbent. To increase the porosity and the compressive strength of sorbent, carbon black and ${\alpha}-alumina$ were mixed with CaO powder during preparation. The effects of sorbent composition on the physical properties were investigated by SEM, TGA, BET, XRD, abrasion strength measuring device and adsorption-desorption instrument. Sorbent with 5 wt% $Al_2O_3$ and 10 wt% carbon black showed the best physical features with $7.61kg_f$ strength and 47% $CO_2$ adsorption capability. Various metal catalysts such as Ni, Co and Fe were supported on the sorbent developed and 10 wt% Ni/sorbent was selected for methane steam reforming process based on the result of reaction experiment. The reaction system using the catalyst/sorbent showed better $H_2$ productivity compared to the detached system with catalyst and sorbent, indicating the effectiveness of the system developed in this study.

Comparison of Dry Reforming of Butane in Catalyst Process and Catalyst+Plasma Process over Ni/γ-Al2O3 Catalyst (뷰테인 건식 개질 반응을 위한 Ni/γ-Al2O3 촉매를 이용한 촉매 공정과 촉매+플라즈마 공정 비교)

  • Jo, Jin-Oh;Jwa, Eunjin;Mok, Young-Sun
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.1
    • /
    • pp.26-36
    • /
    • 2018
  • Conventional nickel-based catalyst processes used for dry reforming reactions have high activation temperatures and problems such as carbon deposition and metal sintering on the active sites of the catalyst surface. In this study, the characteristics of butane dry reforming reaction were investigated by using DBD plasma combined with catalytic process and compared with existing catalyst alone process. The physical and chemical properties of the catalysts were investigated using a surface area & pore size analyzer, XRD, SEM and TEM. Using $10%Ni/{\gamma}-Al_2O_3$ at $580^{\circ}C$, in the case of the catalyst+plasma process, the conversion of carbon dioxide and butane were improved by about 30% than catalyst alone process. When the catalyst+plasma process, the conversion of carbon dioxide and butane and the hydrogen production concentration are enhanced by the influence of various active species generated by the plasma. In addition, it was found that the particle size of the catalyst is decreased by the plasma in the reaction process, and the degree of dispersion of the catalyst is increased to improve the efficiency.