• Title/Summary/Keyword: Combined Heat & Power

Search Result 326, Processing Time 0.025 seconds

Performance Prediction of a Combined Heat and Power Plant Considering the Effect of Various Gas Fuels

  • Joo, Yong-jin;Kim, Mi-yeong;Park, Se-ik;Seo, Dong-kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • The performance prediction software developed in this paper is a process analysis tool that enables one to foretell the behavior of processes when certain conditions of operation are altered. The immediate objective of this research is to predict the process characteristics of combined heat and power plant under varying operating conditions. A cogeneration virtual power plant that mimics the mechanical performance of the actual plant was constructed and the performance of the power plant was predicted in the following varying atmospheric conditions: temperature, pressure and humidity. This resulted in a positive outcome where the performance of the power plant under changing conditions were correctly predicted as well as the calorific value of low calorific gas fuel such as shale gas and PNG. The performance prediction tool can detect the operation characteristics of the power plant through the performance index analysis and thus propose the operation method taking into consideration the changes in environmental conditions.

Performance Variation of a Combined Cycle Power Plant by Coolant Pre-cooling and Fuel Pre-heating (냉각공기 예냉각과 연료예열에 의한 복합발전 시스템의 성능변화)

  • Kwon, Ik-Hwan;Kang, Do-Won;Kim, Tong-Seop;Kim, Jae-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.57-63
    • /
    • 2012
  • Effects of coolant pre-cooling and fuel pre-heating on the performance of a combined cycle using a F-class gas turbine were investigated. Coolant pre-cooling results in an increase of power output but a decrease in efficiency. Performance variation due to the fuel pre-heating depends on the location of the heat source for the pre-heating in the bottoming cycle (heat recovery steam generator). It was demonstrated that a careful selection of the heat source location would enhance efficiency with a minimal power penalty. The effect of combining the coolant pre-cooling and fuel pre-heating was also investigated. It was found that a favorable combination would yield power augmentation, while efficiency remains close to the reference value.

Design Performance Analysis of Micro Gas Turbine-Organic Rankine Cycle Combined System (마이크로 가스터빈과 유기매체 랜킨사이클을 결합한 복합시스템의 설계 성능해석)

  • Lee Joon Hee;Kim Tong Seop
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.536-543
    • /
    • 2005
  • This study analyzes the design performance of a combined system of a recuperated cycle micro gas turbine (MGT) and a bottoming organic Rankine cycle (ORC) adopting refrigerant (R123) as a working fluid. In contrast to the steam bottoming Rankine cycle, the ORC optimizes the combined system efficiency at a higher evaporating pressure. The ORC recovers much greater MGT exhaust heat than the steam Rankine cycle (much lower stack temperature), resulting in a greater bottoming cycle power and thus a higher combined system efficiency. The optimum MGT pressure ratio of the combined system is very close to the optimum pressure ratio of the MGT itself. The ORC's power amounts to about $25\%$ of MGT power. For the MGT turbine inlet temperature of $950^{\circ}C$ or higher, the combined system efficiency, based on shaft power, can be higher than $45\%$.

An Experimental Investigation on Combined Convective Heat Transfer of NonNewtonian Fluids (비뉴톤유체의 복합대류 열전달에 관한 실험적 연구)

  • 김용진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1770-1779
    • /
    • 1995
  • A combined convective heat transfer study for non-Newtonian fluids was experimentally performed in uniformly heated horizontal tubes with laminar flow in the thermal entry region. Velocity profiles were fully developed at the entrance of the heated sections in the tubes. Aqueous solutions of sodium carboxymethylcellulose(CMC ) were used; their behavior showed a reasonably good fit into the power-law model, .tau.=K.gamma.$^{n}$ . The test sections were made of copper with inside diameters of 3.23 cm and 5.042 cm and lengths of approximately 300 cm. Most experimental runs displayed noticeable secondary flows caused by buoyancy ; when present, secondary flows caused significant increase in the rate of heat transfer over the purely forced-convection case. A correlation, which relates the rate of heat transfer for flows with temperature-dependent properties, free convection effects, and non-newtonian effects, was suggested.

Performance Measurements of A Stirling Engine for Household Micro Combined Heat and Power with Heat Source Temperatures and Cooling Flow Rates (가정용 열병합 발전을 위한 스털링 엔진의 열원 온도 및 냉각수 유량에 따른 성능 실험)

  • Sim, Kyuho;Kim, Mingi;Lee, Yoon-Pyo;Jang, Seon-Jun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • A Beta-type Stirling engine is developed and tested on the operation stability and cycle performance. The flow rate for cooling water ranges from 300 to 1500 ml/min, while the temperature of heat source changes from 300 to $500^{\circ}C$. The internal pressure, working temperatures, and operation speed are measured and the engine performance is estimated from them. In the experiment, the rise in the temperature of heat source reduces internal pressure but increases operation speed, and overall, enhances the power output. The faster coolant flow rate contributes to the high temperature limit for stable operation, the cycle efficiency due to the alleviated thermal expansion of power piston, and the heat input to the engine, respectively. The experimental Stirling engine showed the maximum power output of 12.1 W and the cycle efficiency of 3.0 % when the cooling flow is 900 ml/min and the heat source temperature is $500^{\circ}C$.

Analysis on the Performance Test Results of Heat Pump for the Closed Cooling Water Heat Recovery on Combined Thermal Power Plant (복합화력발전소의 냉각수 배열회수를 위한 히트펌프의 성능평가)

  • Lee, Sung-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.43-48
    • /
    • 2016
  • This study proves successes of Energy Service Company (ESCO) business by heat pump performance test. The purpose of ESCO business is recover investment costs through saving energy from installation of energy reduction facility. The most important technology assessment items are heat recovery and generator output. Experimental result shows that increase quality of heat recovery (11.52Gcal/h), while decrease generator output (0.234kw). In its final analysis, the ESCO business is successful according to our data.

Theoretical Characteristics of Thermodynamic Performance of Combined Heat and Power Generation with Parallel Circuit using Organic Rankine Cycle (유기랭킨사이클을 이용한 병렬 열병합 발전시스템의 열역학적 이론 성능 특성)

  • Kim, Kyoung-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.49-56
    • /
    • 2011
  • In this study a novel cogeneration system driven by low-temperature sources at a temperature level below $190^{\circ}C$ is investigated by first and second laws of thermodynamics. The system consists of Organic Rankine Cycle(ORC) and an additional heat generation as a parallel circuit. Seven working fluids of R143a, R22, R134a, R152a, $iC_4H_{10}$(isobutane), $C_4H_{10}$(butane), and R123a are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid and optimum turbine inlet pressure are considered to extract maximum power from the source. Results show that due to a combined heat and power generation, both the efficiencies by first and second laws can be significantly increased in comparison to a power generation, however, the second law efficiency is more resonable in the investigation of cogeneration systems. Results also show that the working fluid for the maximum system efficiency depends on the source temperature.

Computer Simulation to Predict Operating Behavior of a Gas Engine Driven Micro Combined Heat and Power System (소형 가스엔진 열병합발전의 운전거동 예측을 위한 컴퓨터 시뮬레이션)

  • Cho, Woo-Jin;Lee, Kwan-Soo;Kim, In-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.873-880
    • /
    • 2010
  • The present study developed a computer simulation program to determine the optimum strategy and capacity of a micro combined heat and power(CHP) system. This simulation program considered a part-load electrical/thermal efficiency and transient response characteristics of CHP unit. The result obtained from the simulation was compared with the actual operation of 30 kW gas engine driven micro CHP system. It was found that the simulation could reproduce the daily operation behavior, such as operating hours and mean load factor, closely to the actual behavior of the system and could predict the amount of electrical/thermal output and fuel consumption with the error of less than 12%.

A Study on the Application in Site of the Concrete Using Fly Ash Produced in Combined Heat Power Plant (열병합발전소 플라이애쉬를 사용한 콘크리트의 현장적용에 관한 연구)

  • 김무한;이상수
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.41-49
    • /
    • 1999
  • This study dealt with the applicability and quality control of the concrete using fly ash produced in combined heat power in a construction site. Firstly, chemical and physical characteristics of the fly ash produced in combined heat power plant re analysed. Also, after investigating the properties of flesh and hardened concrete through various experiments, the fly ash concrete was placed in depositing construction in Ulsan Petrochemical Service Co. This field application was focussed on the quality control system in the site as production, placing and curing of concrete. As the result of this study, the quantity of CaO in the fly ash is relatively high based on the chemical analysis. The fly ash concrete showed slumping maintenance and high viscosity properties in the optimal mixing conditions (W/B:44~45%, S/a:$45\pm$2%, W:185kg/m). And, quality control and assurance of the fly ash concrete in actual site were verified by various testing methods.

Performance Characteristics of Combined Heat and Power Generation with Series Circuit Using Organic Rankine Cycle (유기랭킨사이클을 이용한 직렬 열병합 사이클의 성능 특성)

  • Kim, Kyoung-Hoon;Jung, Young-Guan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.699-705
    • /
    • 2011
  • A combined heat and power cogeneration system driven by low-temperature sources is investigated by the first and second laws of thermodynamics. The system consists of Organic Rankine Cycle (ORC) and an additional process heater as a series circuit. Seven working fluids of R152a, propane, isobutane, butane, R11, R123, isopentane and n-pentane are considered in this work. Maximum mass flow rate of a working fluid relative to that of the source fluid is considered to extract maximum power from the source. Results indicate that the second-law efficiency can be significantly increased due to the combined heat and power generation. Furthermore, higher source temperature and lower turbine inlet pressure lead to lower second-law efficiency of ORC system but higher that of combined system. Results also show that the optimum working fluid varies with the source temperature.