• Title/Summary/Keyword: Combined GPS

Search Result 159, Processing Time 0.022 seconds

The Capability Comparison of Positioning Performances using GPS and GPS/GLONASS (GPS와 GPS/GLONASS의 측위수행 능력 비교)

  • Park, Woon-Yong;Lee, In-Su;Kim, Jin-Soo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.9 no.1 s.17
    • /
    • pp.59-66
    • /
    • 2001
  • Satellite visibility, Accuracy, and Availability were increased by the combined GPS/GLONASS. But, there are some problems such as differences in the time frame, differences in the coordinate datum, and the problem of solving carrier phase ambiguities in the combined carrier frequency solutions due to different GLONASS frequency. Therefore, the accuracy of single point positioning using the combined GPS/GLONASS will be assessed, and intend to study the characteristics of the combined GPS/GLONASS with considered the rate of data acquisition according to the visibility of satellite and elevation cutoff at the combined GPS/GLONASS.

  • PDF

Development of a Combined GPS/GLONASS PPP Method

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.3 no.1
    • /
    • pp.31-36
    • /
    • 2014
  • Precise Point Positioning (PPP) is a stand-alone precise positioning approach. As the quality of satellite orbit and clock products from analysis centers has been improved, PPP can provide more precise positioning accuracy and reliability. A combined use of Global Positioning System (GPS) and Global Orbiting Navigation Satellite System (GLONASS) in PPP is now available. In this paper, we explained about an approach for combined GPS and GLONASS PPP measurement processing, and validated the performance through the comparison with GPS-only PPP results. We also used the measurement obtained from the GRAS reference station for the performance validation. As a result, we found that the combined GPS/GLONASS PPP can yield a more precise positioning than the GPS-only PPP.

Analysis of the Combined Positioning Accuracy using GPS and GLONASS Navigation Satellites

  • Choi, Byung-Kyu;Roh, Kyoung-Min;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.2 no.2
    • /
    • pp.131-137
    • /
    • 2013
  • In this study, positioning results that combined the code observation information of GPS and GLONASS navigation satellites were analyzed. Especially, the distribution of GLONASS satellites observed in Korea and the combined GPS/GLONASS positioning results were presented. The GNSS data received at two reference stations (GRAS in Europe and KOHG in Goheung, Korea) during a day were processed, and the mean value and root mean square (RMS) value of the position error were calculated. The analysis results indicated that the combined GPS/GLONASS positioning did not show significantly improved performance compared to the GPS-only positioning. This could be due to the inter-system hardware bias for GPS/GLONASS receivers, the selection of transformation parameters between reference coordinate systems, the selection of a confidence level for error analysis, or the number of visible satellites at a specific time.

Vehicle Navigation using Carrier Phase of GPS/GLONASS (GPS/GLONASS의 반송파 위상을 이용한 차량항법)

  • Lee, In-Su;Lee, Yong-Hee;Moon, Du-Youl;Son, Young-Dong
    • Journal of Navigation and Port Research
    • /
    • v.26 no.3
    • /
    • pp.303-310
    • /
    • 2002
  • Nowadays, the combined land navigation system using GPS(Global Positioning System) and DR(Deduced Reckoning), etc. has been used. Although GPS is popular with the land navigation system, this is not useful for the kinematic positioning of the vehicles in the urban canyon because of its few satellites. Thus, this study deals with the kinematic positioning of the vehicles with the combined GPS/GLONASS(GLObal Navigation Satellite System) to compliment the drawbacks of GPS. So the kinematic positioning of the vehicles can be performed constantly by the combined GPS/GLONASS based on the high acquisition rate of data with the help of GLONASS despite of many obstacles and few satellites tracked in the test sites. Consequently, the combined GPS/GLONASS can be applicable to the control of traffic flow and the effective management of read system.

Combined GPS/GLONASS Relative Receiver DCB Estimation Using the LSQ Method and Ionospheric TEC Changes over South Korea

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 2018
  • The use of dual-frequency measurements from the Global Navigation Satellite System (GNSS) enables us to observe precise ionospheric total electron content (TEC). Currently, many GNSS reference stations in South Korea provide both GPS and GLONASS data. In the present study, we estimated the grid-based TEC values and relative receiver differential code biases (DCB) from a GNSS network operated by the Korea Astronomy and Space Science Institute. In addition, we compared the diurnal variations in a TEC time series from solutions of the GPS only, the GLONASS only, and combined GPS/GLONASS processing. A significant difference between the GPS only TEC and combined GPS/GLONASS TEC at a specific grid point over South Korea appeared near the solar terminator. It is noted that GLONASS measurements can contribute to observing a variation in ionospheric TEC over high latitude regions.

Characteristics of Relative Navigation Algorithms Using Laser Measurements and Laser-GPS Combined Measurements

  • Kang, Dae-Eun;Park, Sang-Young;Son, Jihae
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.287-293
    • /
    • 2018
  • This paper presents a satellite relative navigation strategy for formation flying, which chooses an appropriate navigation algorithm according to the operating environment. Not only global positioning system (GPS) measurements, but laser measurements can also be utilized to determine the relative positions of satellites. Laser data is used solely or together with GPS measurements. Numerical simulations were conducted to compare the relative navigation algorithm using only laser data and laser data combined with GPS data. If an accurate direction of laser pointing is estimated, the relative position of satellites can be determined using only laser measurements. If not, the combined algorithm has better performance, and is irrelevant to the precision of the relative angle data between two satellites in spherical coordinates. Within 10 km relative distance between satellites, relative navigation using double difference GPS data makes more precise relative position estimation results. If the simulation results are applied to the relative navigation strategy, the proper algorithm can be chosen, and the relative position of satellites can be estimated precisely in changing mission environments.

Accuracy Analysis of Positioning Supplementary Control Point with the RTK-GPS and RTK-GPS/GLONASS (RTK-GPS와 RTK-GPS/GLONASS에 의한 도근점 측위의 정확도 분석)

  • Park, Woon-Yong;Kim, Jin-Soo;Kim, Yong-Bo;Back, Ki-Suk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.61-69
    • /
    • 2003
  • The study is the open area keeping a few visible satellites and the urban area covered with the high building, an electric pole were chosen for evaluation of accuracy of satellite positioning. First, suggest the validity of RTK-GPS, RTK-GPS/GLONASS and compared the accuracy with that of the classical surveying method. As a result. In urban area, in case of real time kinematic positioning when compare between the method combined by GPS/GLONASS and by GPS alone the result of GPS/GLONASS - combination more excellent. And in open ana positioning combined GPS/GLONASS was more excellent than GPS alone in both real time differential and real time kinematic. So, RTK-GPS, RTK-GPS/GLONASS contribute to the digital mapping of Basic map and the existed map necessary for the building of PBLIS to the computerization of cadastral map in the effectiveness in time and in cost and hereafter the combined GPS/TS is expected to contribute to the development of NGIS, Re-investigation of a land register, the execution drawing on site.

  • PDF

Interoperability Analysis of GPS and Galileo on Time (GPS와 Galileo 시각의 상호운용성 분석)

  • Shin, Mi-Young;Song, Se-Phil;Ko, Jae-Young;Yang, Sung-Hoon;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.979-984
    • /
    • 2010
  • The users who use a combined GPS/Galileo receiver will benefit from an improved availability of the combined system and a reduced dependence on one particular positioning system. However, these users must solve the problem of an offset between the time scales of GPS and Galileo (GGTO). GGTO must be analyzed for not only a navigation system but also a timing system requesting precise time service. This paper analyzes the interoperability problem in a combined GPS/Galileo timing receiver and estimates the timing performance under various assumptions. The GPS real measurements were collected by using the commercial timing receiver from Ashtech Ltd. and the Galileo measurements were generated by a simulation software. A suitable test scenario set-up and the performance in a point of timing stability was evaluated.

Patch Antennas for GPS/GLONASS Combined Receiving (GPS/GLONASS 통합 수신을 위한 패치 안테나)

  • Moon, Jin-Seob;Jung, Soo-Young;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.4 no.2
    • /
    • pp.152-161
    • /
    • 2000
  • Recently, it is considered to combine the GPS receiver with the GLONASS for the improvement of performance and accuracy. This combined system reduces errors by SA for GPS, and has merits to select receivable satellite. In this paper, aperture-coupled patch antenna and small sized ceramic dielectric patch antenna are designed and implemented for GPS/GLONASS combined receiver, which show a wideband characteristics with circular polarization. The manufactured antennas have the bandwidth more than 240 MHz, VSWR less than 1.5:1, and the axial ratio less than 3dB, and satisfy required characteristics of the GPS/GLONASS antenna.

  • PDF

Design and Implementation of Combined RF Receiver Front End for GPS/GLONASS (GPS/ GLONASS 통합 수신용 RF 전단부의 설계 및 제작)

  • 주재순;염경환;이상정
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.494-502
    • /
    • 2001
  • GPS(Global Positioning System) and GLONASS(GLObal Navigation Satellite System) are basic technologies providing the information of the position and the time, and they have various applications such as navigation, survey, control, and so on. However, each GPS and GLONASS has limited number of visible satellites, and, from the view of strategy, it is undesirable to be heavily dependent on only one system. Thus, GPS/GLONASS combined receiver became required to obtain more precise navigation and system stability. In this paper, the RF front end of GPS/GLONASS combined receiver was fabricated on 130$\times$80 $\textrm{mm}^2$ PCB(Printed Circuit Board), and its system application was shown finally one chip possibility of GLONASS receiver is studied.

  • PDF