• 제목/요약/키워드: Combination reactor

검색결과 149건 처리시간 0.03초

Study on heat transfer characteristics and structural parameter effects of heat pipe with fins based on MOOSE platform

  • Xiaoquan Chen;Peng Du;Rui Tian;Zhuoyao Li;Hongkun Lian;Kun Zhuang;Sipeng Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권1호
    • /
    • pp.364-372
    • /
    • 2023
  • The space reactor is the primary energy supply for future space vehicles and space stations. The radiator is one of the essential parts of a space reactor. Therefore, the research on radiators can improve the heat dissipation power, reduce the quality of radiators, and make the space reactor smaller. Based on MOOSE multi-physics numerical calculation platform, a simulation program for the combination of heat pipe and fin at the end of heat pipe radiator is developed. It is verified that the calculation result of this program is accurate and the calculation speed is fast. Analyze the heat transfer characteristics of the combination with heat pipe and fin, and obtain its internal temperature field. Based on the calculation results, the influence of structural parameters on the heat dissipation power is analyzed. The results show that when the fin width is 0.25 m, fin thickness is 0.002 m, condensing section length is 0.5425 m and heat pipe radius is 0.014 m, the power-mass ratio is the highest. When the temperature is 700K-900K, the heat dissipation power increases 41.12% for every 100K increase in the operating temperature. Smaller fin width and thinner fin thickness can improve the power-mass ratio and reduce the radiator quality.

Simulation Analysis of Control Methods for Parallel Multi-Operating System constructed by the Same Output Power Converters

  • Ishikura, Keisuke;Inaba, Hiromi;Kishine, Keiji;Nakai, Mitsuki;Ito, Takuma
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권3호
    • /
    • pp.282-288
    • /
    • 2014
  • A large capacity power conversion system constructed by using two or more existing power converters has a lot of flexibility in how the power converters are used. However, at the same time, it has a problem of cross current flows between power converters. The cross current must be suppressed by controlling the system while miniaturizing the combination reactor. This paper focuses on two current control methods of a power conversion system constructed by using two power converters connected in parallel supplying the same power. In order to elucidate the control performance of cross current, each control method which are aimed at controlling cross current and not directly controlling it are examined in simulations.

복합촉매를 이용한 플라즈마 반응에 의한 황산화물의 제거에 관한 연구 (A study of decomposition of sulfur oxides using Composite catalyst by plasma reactions)

  • 우인성;황명환;김다영;김관중;김성태;박화용
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.655-668
    • /
    • 2013
  • In this study, a combination of the plasma discharge in the reactor by the reaction surface discharge reactor complex catalytic reactor and air pollutants, hazardous gas SOx, change in frequency, residence time, and the thickness of the electrode, the addition of simulated composite catalyst composed of a variety of gases, including decomposition experiments were performed by varying the process parameters. 20W power consumption 10kHz frequency decomposition removal rate of 99% in the decomposition of sulfur oxides removal experiment that is attached to the titanium dioxide catalyst reactor experimental results than if you had more than 5% increase. If added to methane gas was added, the removal efficiency increased decomposition, the oxygen concentration increased with increasing degradation rate in the case of adding carbon dioxide decreased.

  • PDF

Safety analysis of marine nuclear reactor in severe accident with dynamic fault trees based on cut sequence method

  • Fang Zhao ;Shuliang Zou ;Shoulong Xu ;Junlong Wang;Tao Xu;Dewen Tang
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4560-4570
    • /
    • 2022
  • Dynamic fault tree (DFT) and its related research methods have received extensive attention in safety analysis and reliability engineering. DFT can perform reliability modelling for systems with sequential correlation, resource sharing, and cold and hot spare parts. A technical modelling method of DFT is proposed for modelling ship collision accidents and loss-of-coolant accidents (LOCAs). Qualitative and quantitative analyses of DFT were carried out using the cutting sequence (CS)/extended cutting sequence (ECS) method. The results show nine types of dynamic fault failure modes in ship collision accidents, describing the fault propagation process of a dynamic system and reflect the dynamic changes of the entire accident system. The probability of a ship collision accident is 2.378 × 10-9 by using CS. This failure mode cannot be expressed by a combination of basic events within the same event frame after an LOCA occurs in a marine nuclear reactor because the system contains warm spare parts. Therefore, the probability of losing reactor control was calculated as 8.125 × 10-6 using the ECS. Compared with CS, ECS is more efficient considering expression and processing capabilities, and has a significant advantage considering cost.

토양 반응조를 이용한 도금폐수 중의 질소 및 인 제거 (Nitrogen and Phosphorus Removal from Plating Wastewater Using the Soil Reactor)

  • 정경훈;최형일;신대윤;임병갑;전기석
    • 한국환경과학회지
    • /
    • 제18권2호
    • /
    • pp.205-213
    • /
    • 2009
  • A laboratory experiment was conducted to investigate nitrogen removal from plating wastewater by a soil reactor. A combination of soil, waste oyster shell and activated sludge were used as a loading media in a soil reactor. The addition of 20% waste oyster shell and activated sludge to the soil accelerated nitrification (88.6% ${NH_4}^{+}-N$ removal efficiency) and denitrification (84.3% ${NO_3}^{-}-N$ removal) in the soil reactor, respectively. In continuous removal, the influent ${NH_4}^{+}-N$ was mostly converted to nitrate nitrogen in the nitrification soil reactor and only a small amount of ${NH_4}^{+}-N$ was found in the effluent. When methanol was added as a carbon source to the denitrification soil reactor, the average removal efficiency of ${NO_3}^{-}-N$ significantly increased. The ${NO_3}^{-}-N$ removal by methanol addition in the denitrification soil reactor was mainly due to denitrification. The phosphorus was removed by the waste oyster shell media in the nitrification soil reactor. Moreover, the phosphorus removal in the denitrification soil reactor was achieved by synthesis of bacteria and the denitrification under anaerobic conditions. The approximate number of nitrifiers and denitrifiers was $3.3{\times}10^5\;MPN/g$ soil at a depth of $1{\sim}10\;cm$ and $3.3{\times}10^6\;MPN/g$ soil at a depth of $10{\sim}20\;cm$, respectively, in the soil reactor mixed with a waste oyster shell media and activated sludge.

Disturbance observer based adaptive sliding mode control for power tracking of PWRs

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제52권11호
    • /
    • pp.2522-2534
    • /
    • 2020
  • It is well known that the model of nuclear reactors features natural nonlinearity, and variable parameters during power tracking operation. In this paper, a disturbance observer-based adaptive sliding mode control (DOB-ASMC) strategy is proposed for power tracking of the pressurized-water reactor (PWR) in the presence of lumped disturbances. The nuclear reactor model is firstly established based on point-reactor kinetics equations with six delayed neutron groups. Then, a new sliding mode disturbance observer is designed to estimate the lumped disturbance, and its stability is discussed. On the basis of the developed DOB, an adaptive sliding mode control scheme is proposed, which is a combination of backstepping technique and integral sliding mode control approach. In addition, an adaptive law is introduced to enhance the robustness of a PWR with disturbances. The asymptotic stability of the overall control system is verified by Lyapunov stability theory. Simulation results are provided to demonstrate that the proposed DOB-ASMC strategy has better power tracking performance than conventional sliding mode controller and PID control method as well as conventional backstepping controller.

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • 제45권4호
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki;Oh, Taeseok;Jung, Kyungbong;Kim, Jaemin;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • 제10권4호
    • /
    • pp.265-275
    • /
    • 2019
  • This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.

UASB 공정에서 기질농도 및 기질주입 기간비가 슬러지 입상화에 미치는 영향 (Effect of Substrate Concentration and Feeding Period Ratio on Sludge Granulation in UASB Process)

  • 최영근;이헌모
    • 한국환경과학회지
    • /
    • 제6권2호
    • /
    • pp.113-124
    • /
    • 1997
  • The basic mechanism of the granular sludge formation which is the most important factor in the start-up and stable operators is not confirmed yet. In this study, the effect of granular sludge formation was investigated with the different substrate concentrations and the various ratios of substrate supply/deficiency. The granular sludge formation in the UASB reactor was closely related to the substrate concentrations and the ratio of substrate supply/deficlency The granular sludge formation was not accelerated at low substrate concentration. It was convinced that granular sludge formation was accelerated when the substrate supply with high concentration was stopped at UASB reactor. From this experiment, it was estimated that granular sludge was formed by the combination of hydrogen utilizing bacteria that form hydrogen condition and acid forming bacteria at substrate deficit condition by mutual symbiosis. Though the removal efficiency of organic matter was decreased as the influent substrate concentration was Increased, the higher the influent substrate the better the granular sludge formation.

  • PDF

Identification of Polymerization Reactor Using Third Order Volterra Kernel Model

  • Numata, Motoki;Kashiwagi, Hiroshi;Harada, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.26.2-26
    • /
    • 2001
  • It is known that Volterra kernel model can represent a wide variety of nonlinear chemical processes. But almost all Volterra kernel models which appeared in the literature are up to second order, because it was difficult to measure higher order Volterra kernels. Kashiwagi has recently shown a method for measuring Volterra kernels up to third order using pseudorandom M-sequence signals. In this paper, the authors verified the applicability of this method for chemical processes using polymerization reactor simulation. Also, the authors have recently proposed a practical Identification method for chemical processes, which is based on the combination of off-line nonlinear identification and on-line linear identification. This method is also applied to the identification of polymerization reactor, and we obtained ...

  • PDF