• 제목/요약/키워드: Combination Mode Resonance

검색결과 24건 처리시간 0.02초

척추 MRI를 위한 One-Channel Phased-Array Quadrature RF 코일 (One-Channel Phased-Array Quadrature RF Coil for Spine Magnetic Resonance Imaging)

  • 양윤정;김선경
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권2호
    • /
    • pp.129-132
    • /
    • 1998
  • 이 논문의 목적은 척추 영상을 위한 One-channel phased-array quadrature RF 코일을 개발하는 것이다. 두 개의 수직방향 RF 코일을 조합하여 만든 Quadrature RF코일은 한 개의 코일을 쓰는 것에 비해 배의 signal-to-noise ratio(SNB) 향상을 얻울 수 있다. Phased-array quadrature RF 코일에서는 코일 element의 크기를 줄임으로써 SNR을 더욱 향상시킬 수 있다. 이에 따라 줄어드는 코일의 Coverage를 유지하기 위해 phased-array 코일에서는 여러 set의 작은 코일을 사용한다. 다음과 같은 두가지 방법으로 Phased-array의 각 코일간의 간섭 현상을 제거했으며 SNR을 개선하였다. (1)인접한 코일을 적당한 간격으로 겹쳐지게 함으로써 상호 인덕턴스를 영으로 만든다. (2)Pro-amp를 코일에 바로 붙임으로써 커플링 회로에서의 SNR loss를 방지하고 그 다음 단에서 코일 사이의 phase차를 보정한다. 이 논문에서는 Receive-only mode의 Phased-array quadrature RF 코일을 개발하여 팬텀과 인체 척추의 영상촬영을 통하여 그 성능을 입증하였다.

  • PDF

직구동 전기기계식 구동기의 강성요구규격에 기반한 설계용 해석모델 (Analysis Model for Design Based on Stiffness Requirement of Direct Drive Electromechanical Actuator)

  • 오상관;이희중;박현종;오동호
    • 한국항공우주학회지
    • /
    • 제47권10호
    • /
    • pp.738-746
    • /
    • 2019
  • 한국형발사체 3단에 사용되는 7톤 짐벌엔진의 추력벡터제어에는 전기유압식 구동장치시스템 대신 중량, 비용 및 시험평가 등의 측면에서 더 효율적인 전기기계식 구동장치시스템을 사용한다. 전기기계식 구동기는 위치제어 서보 구동기로 고진공에서도 운용 가능한 BLDC 모터를 사용한다. 짐벌엔진을 갖는 발사체의 경우 구동기 자체 진동모드와 구동기를 지지하는 기체구조체의 벤딩모드, 짐벌엔진의 관성부하 등이 조합되어 합성공진 현상이 발생할 수 있다. 합성공진이 발생할 경우 발사체 자세제어는 불안정해진다. 이러한 관계로 짐벌엔진 및 기체구조체 지지부, 구동장치시스템의 고유 특성을 고려하여 강성에 대한 요구규격이 적용되어 왔다. 한국형발사체 3단 7톤 짐벌엔진의 경우 구동장치시스템의 강성요구규격은 $3.94{\times}10^7N/m$ 수준이며 이를 만족시키기 위한 직구동 방식전기기계식 구동기를 설계하였다. 본 논문에서는 강성요구규격을 기반으로 설계된 직구동 전기기계식 구동기의 등가강성 해석모델을 제안하고, 이를 실험결과로 검증하였다.

리그닌 화학구조 모델의 역사적 고찰 (Historical Consideration of Lignin Models for Native Lignin Structure)

  • 황병호
    • 임산에너지
    • /
    • 제23권1호
    • /
    • pp.45-68
    • /
    • 2004
  • The word of lignin is derived from the Latin word 'ligum' meaning wood. Lignin is complex polymer consisting of coniferyl alcohol, sinapyl alcohol and p-coumaryl alcohol unit and has an amorphous, three dimensional network structure which is hard to be hydrolyzed by acid. Lignin is found in the cell wall of plants lignified. The mode of polymerization of these alcohols in the cell wall lead to a heterogeneous branched and cross-linked polymer in which phenyl propane units are linked by carbon-carbon and carbon-oxygen bonds. This polymerization of precursors, p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol to lignin is formed by enzymic dehydrolyzation. The reaction is initiated by an electron transfer which results in the formation of resonance-stabilized phenoxy radical. The combination of these radicals produces a variety of dimers, trimers and oligomers and so on. Lignin research has been divided into basic and practical application field. The basic studies contains biosynthesis, chemical structure, distribution in the cell wall and reactivity by reductants, oxidants and organic solvents. The application research will be approached the reaction of lignin in various pulp making involving pulp bleaching and its effect on pulp qualities. Lignin also will be studied for the production of fine chemicals, polymer products and the conservation into an energy source like petroleum oil because the amount of lignin produced in pulp making process is more than 51,000,000 tons per year in the world. Both basic and application research must lay emphasis on the development for the utilization of lignin and the pulping process. But these researches can not be completed without understanding lignin structure containing functional groups. Therefore, this paper was focused on the review of lignin formulation which has been studied since 1948 in chronological order. This review was based on monomers, dimers, trimers and tetramers of phenyl propane unit structures which were isolated and identified by different methods from various wood.ious wood.

  • PDF

Feasibility study of the beating cancellation during the satellite vibration test

  • Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • 제5권2호
    • /
    • pp.225-237
    • /
    • 2018
  • The difficulties of satellite vibration testing are due to the commonly expressed qualification requirements being incompatible with the limited performance of the entire controlled system (satellite + interface + shaker + controller). Two features cause the problem: firstly, the main satellite modes (i.e., the first structural mode and the high and low tank modes) are very weakly damped; secondly, the controller is just too basic to achieve the expected performance in such cases. The combination of these two issues results in oscillations around the notching levels and high amplitude beating immediately after the mode. The beating overshoots are a major risk source because they can result in the test being aborted if the qualification upper limit is exceeded. Although the abort is, in itself, a safety measure protecting the tested satellite, it increases the risk of structural fatigue, firstly because the abort threshold has been already reached, and secondly, because the test must restart at the same close-resonance frequency and remain there until the qualification level is reached and the sweep frequency can continue. The beat minimum relates only to small successive frequency ranges in which the qualification level is not reached. Although they are less problematic because they do not cause an inadvertent test shutdown, such situations inevitably result in waiver requests from the client. A controlled-system analysis indicates an operating principle that cannot provide sufficient stability: the drive calculation (which controls the process) simply multiplies the frequency reference (usually called cola) and a function of the following setpoint, the ratio between the amplitude already reached and the previous setpoint, and the compression factor. This function value changes at each cola interval, but it never takes into account the sensor signal phase. Because of these limitations, we firstly examined whether it was possible to empirically determine, using a series of tests with a very simple dummy, a controller setting process that significantly improves the results. As the attempt failed, we have performed simulations seeking an optimum adjustment by finding the Least Mean Square of the difference between the reference and response signal. The simulations showed a significant improvement during the notch beat and a small reduction in the beat amplitude. However, the small improvement in this process was not useful because it highlighted the need to change the reference at each cola interval, sometimes with instructions almost twice the qualification level. Another uncertainty regarding the consequences of such an approach involves the impact of differences between the estimated model (used in the simulation) and the actual system. As limitations in the current controller were identified in different approaches, we considered the feasibility of a new controller that takes into account an estimated single-input multi-output (SIMO) model. Its parameters were estimated from a very low-level throughput. Against this backdrop, we analyzed the feasibility of an LQG control in cancelling beating, and this article highlights the relevance of such an approach.