• Title/Summary/Keyword: Combat aircraft

Search Result 97, Processing Time 0.032 seconds

Evaluation of the Combat Aircraft Susceptibility Against Surface-Based Threat Using the Weighted Score Algorithm

  • Kim, Joo-Young;Kim, Jin-Young;Lee, Kyung-Tae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.396-402
    • /
    • 2011
  • Aircraft combat survivability is an essential factor in the design of combat aircrafts that operate in an enemy air defense area. The combat aircrafts will be confronted with anti-aircraft artillery and/or surface-to-air missiles (SAM) from the ground, and their survivability can be divided into two categories: susceptibility and vulnerability. This article studies the prediction of susceptibility in the case of a one-on-one engagement between the combat aircraft and a surface-based threat. The weighted score method is suggested for the prediction of susceptibility parameters, and Monte Carlo simulations are carried out to draw qualitative interpretation of the susceptibility characteristics of combat aircraft systems, such as the F-16 C/D, and the hypersonic aircraft, which is under development in the United States, versus ground threat from the SAM SA-10.

Innovative Technologies for Tactical Combat Aircraft Powerplants (전술전투기용 추진기관의 혁신 기술)

  • Lee, Gi-Yeong;Gang, Su-Jun
    • The Journal of Aerospace Industry
    • /
    • s.45
    • /
    • pp.67-81
    • /
    • 1998
  • With projections into the future advanced Korea fighter development, the trend of tactical combat aircraft powerplants technique development over the past decade is presented. Ti was particularly focused on current innovative powerplants technologies such as lower density stronger materials and turbomachniery aerodynamics. With reviewing the status of aircraft powerplants which are currently underdeveloped next generation combat aircraft, it shows some core techniques that are needed for developing Korean type combat aircraft.

  • PDF

Manned-Unmanned Teaming Air-to-Air Combat Tactic Development Using Longshot Unmanned Aerial Vehicle (롱샷 무인기를 활용한 유무인 협업 공대공 전술 개발)

  • Yoo, Seunghoon;Park, Myunghwan;Hwang, Seongin;Seol, Hyeonju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.64-72
    • /
    • 2021
  • Manned-unmanned teaming can be a very promising air-to-air combat tactic since it can maximize the advantage of combining human insight with the robustness of the machine. The rapid advances in artificial intelligence and autonomous control technology will speed up the development of manned-unmanned teaming air-to-air combat system. In this paper, we introduce a manned-unmanned teaming air-to-air combat tactic which is composed of a manned aircraft and an UAV. In this tactic, a manned aircraft equipped with radar is functioning both as a sensor to detect the hostile aircraft and as a controller to direct the UAV to engage the hostile aircraft. The UAV equipped with missiles is functioning as an actor to engage the hostile aircraft. We also developed a combat scenario of executing this tactic where the manned-unmanned teaming is engaging a hostile aircraft. The hostile aircraft is equipped with both missiles and radar. To demonstrate the efficiency of the tactic, we run the simulation of the scenario of the tactic. Using the simulation, we found the optimal formation and maneuver for the manned-unmanned teaming where the manned-unmanned teaming can survive while the hostile aircraft is shot-downed. The result of this study can provide an insight to how manned aircraft can collaborate with UAV to carry out air-to-air combat missions.

Aircraft Combat Survivability Analysis Model for the Air-to-Ground Mission (공대지 임무를 위한 항공기 전투생존성 분석모형)

  • 김인동;하석태
    • Journal of the military operations research society of Korea
    • /
    • v.24 no.2
    • /
    • pp.1-16
    • /
    • 1998
  • Aircraft combat survivability(ACS) can be defined here as the probability of an aircraft to accomplish a given mission and not to be killed by enemy threats. The purpose of this thesis is to obtain analytically the combat survivability of the military aircraft according to the enemy and operation environment. Five factors under which a mission is being carried out are considered in this study. These factors are types and performance of enemy threats, aircraft susceptibility, aircraft vulnerability, ECM(electronic counter measures) capability, and pilot's capability. The model constructed in this study would be a useful tool to analyze ACS based on analytical method. It is also able to provide a better input data for wargaming simulation and present a criterion on determining optimal sorties for aircraft's air-to-ground mission.

  • PDF

Development of gear fault diagnosis architecture for combat aircraft engine

  • Rajdeep De;S.K. Panigrahi
    • Advances in Computational Design
    • /
    • v.8 no.3
    • /
    • pp.255-271
    • /
    • 2023
  • The gear drive of a combat aircraft engine is responsible for power transmission to the different accessories necessary for the engine's operation. Incorrect power transmission can occur due to the presence of failure modes in the gears like bending fatigue, pitting, adhesive wear, scuffing, abrasive wear and polished wear etc. Fault diagnosis of the gear drive is necessary to get an early indication of failure of the gears. The present research is to develop an algorithm using different vibration signal processing techniques on industrial vibration acquisition systems to establish gear fault diagnosis architecture. The signal processing techniques have been used to extract various feature vectors in the development of the fault diagnosis architecture. An open-source dataset of other gear fault conditions is used to validate the developed architecture. The results is a basis for development of artificial intelligence based expert systems for gear fault diagnosis of a combat aircraft engine.

A study on Automatic Air Combat Simulation

  • Imado, Fumiak;Furukawa, Keiichi;Ozawa, Yoichiro;Mori, Tomokazu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.156.6-156
    • /
    • 2001
  • A computer software system which enables to assess the air combat performance only by a computer is currently under development. The system is composed with plural aircraft models, missile models, bullet models etc. The aircraft can implement several empirical air combat maneuvers automatically depending on the situation , therefore air combat simulations and assessment can be attained. Some of these maneuvers and features are explained.

  • PDF

Supermaneuverability of High Performance Combat Aircraft (고성능 전투기의 초기동성)

  • 손명환;백승욱;이기영
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.40-51
    • /
    • 1999
  • This paper reviews the combat survivability and supermaneuverbility which are principal factors in current and future high performance combat aircraft design. First of all, the fighter agility evaluation factors were presented. And then, emphasis was put on technologies associated with supermaneuverbility, such as vortex lift, high angle of attack aerodynamics, thrust vectoring and control system technologies that integrate each technology. The advanced nations' supermaneuverbility R/D programs were introduced as well.

  • PDF

An Investigation of the Effects of Flaperon Actuator Failure on Flight Maneuvers of a Supersonic Aircraft

  • Oh, Seyool;Cho, Inje;McLaughlin, Craig
    • International Journal of Aerospace System Engineering
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2016
  • The improvements in high performance and agility of modern fighter aircraft have led to improvements in survivability as well. Related to these performance increases are rapid response and adequate deflection of the control surfaces. Most control surface failures result from the failure of the actuator. Therefore, the failure and behavior of the actuators are essential to both combat aircraft survivability and maneuverability. In this study, we investigate the effects of flaperon actuator failure on flight maneuvers of a supersonic aircraft. The flight maneuvers were analyzed using six degrees of freedom (6DOF) simulations. This research will contribute to improvements in the reconfiguration of control surfaces and control allocation in flight control algorithms. This paper compares the results of these 6DOF simulations with the horizontal tail actuator failures analyzed previously.

Study of the UCAS Susceptibility Parameters and Sensitivities by using Monte-Carlo Simulation (몬테카를로 모사법을 이용한 무인전투기의 위약도에 영향을 미치는 파라미터와 민감도에 대한 연구)

  • Choi, Kwang-Sik;Lee, Kyung-Tae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.242-253
    • /
    • 2011
  • The typical missions for the current stand-off UAVs are surveillance and reconnaissance. On the other hand, the primary mission for the future UCAS will be combat mission such as SEAD under the man-made ultimately hostile environment including SAM, antiaircraft artillery, threat radar, etc. Therefore, one of the most important challenges in UCAS design is improvement of survivability. The current studies for aircraft combat survivability are focused on the improvement of susceptibility and vulnerability of manned aircraft system. Although the survivability design methodology for UCAS might be very similar to the manned combat system but there are some differences in mission environment, system configuration, performance between manned and unmanned systems. So the parameters and their sensitivities which affect aircraft combat survivability are different in qualitatively and quantitatively. The susceptibility related parameters for F-16 C/D and X-45A as an example of manned and unmanned system are identified and the susceptibility parameter sensitivities are analyzed by using Monte-Carlo Simulation in this study.

An Analysis of Core Technologies and Acquisition Methodology for Combat Aircraft Powerplants (전투기 추진기관 기술현황 분석 및 핵심기술 획득 방안)

  • 이기영;김해원;강수준
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.92-105
    • /
    • 2000
  • Core technologies of powerplants, which are necessary for the development of Korean type combat aircraft, are analyzed. And then, the acquisition methodologies for the technologies are proposed. With respect to the aircraft engine design and manufacturing technologies, simple basic technologies such as component manufacturing and assembling technology come to close to those of advanced countries, but the core technologies were not acquired or in the understanding level only. Therefore, the research on the component manufacturing technology should be specialized for buildup of international competition first, and the research on core technologies such as high pressure compressor design, blisk, FADEC and hollow fan blade design should be concentrated step by step by taking an active participation in the development project of international cooperative aircraft powerplants.

  • PDF