• Title/Summary/Keyword: Combat Vehicle

Search Result 116, Processing Time 0.026 seconds

Effects of IR Reduction Design on RCS of UCAV (IR 저감 설계가 무인전투기의 RCS에 미치는 영향)

  • Song, Dong-Geon;Yang, Byeong-Ju;Myong, Rho-Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.4
    • /
    • pp.297-305
    • /
    • 2018
  • The role of UCAV is to carry out various missions in hostile situations such as penetration and attack on the enemy territory. To this end, application of RF stealth technology is indispensable so as not to be caught by enemy radar. The X-47B UCAV with blended wing body configuration is a representative aircraft in which modern RCS reduction schemes are heavily applied. In this study, a model UCAV was first designed based on the X-47B platform and then an extensive RCS analysis was conducted to the model UCAV in the high-frequency regime using the Ray Launching Geometrical Optics (RL-GO) method. In particular, the effects of configuration of UCAV considering IR reduction on RCS were investigated. Finally, the effects of RAM optimized for the air intake of the model UCAV were analyzed.

Computational Investigation of the Effect of Various Flight Conditions on Plume Infrared Signature (항공기 비행환경에 따른 플룸 IR 신호 영향성 연구)

  • Kim, Joon-Young;Chun, Soo-Hwan;Myong, Rho-Shin;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.185-193
    • /
    • 2013
  • The plume infrared signature effects at various flight conditions of aircraft were investigated for the purpose of reducing infrared signature level. The nozzle of a virtual subsonic unmanned combat aerial vehicle was designed through a performance analysis. Nozzle and associated plume flowfields were first analyzed using a density-based CFD code and plume IR signature was then calculated on the basis of the narrow-band model. Finally, qualitative information for the plume infrared signature characteristics was obtained through the analysis of the IR signature effects at various flight conditions.

Vulnerability Assessment for a Complex Structure Using Vibration Response Induced by Impact Load (복합 구조물의 충격 응답 특성을 이용한 취약성 평가 모델 연구)

  • Park, Jeongwon;Koo, Man Hoi;Park, Junhong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.10
    • /
    • pp.1125-1131
    • /
    • 2014
  • This work presents a vulnerability assessment procedure for a complex structure using vibration characteristics. The structural behavior of a three-dimensional framed structure subjected to impact forces was predicted using the spectral element method. The Timoshenko beam function was applied to simulate the impact wave propagations induced by a high-velocity projectile at relatively high frequencies. The interactions at the joints were analyzed for both flexural and longitudinal wave propagations. Simulations of the impact energy transfer through the entire structure were performed using the transient displacement and acceleration responses obtained from the frequency analysis. The kill probabilities of the crucial components for an operating system were calculated as a function of the predicted acceleration amplitudes according to the acceptable vibration levels. Following the proposed vulnerability assessment procedure, the vulnerable positions of a three-dimensional combat vehicle with high possibilities of damage generation of components by impact loading were identified from the estimated vibration responses.

Investigation of IR Survivability of Unmanned Combat Aerial Vehicle against Surface-to-Air Missiles (무인전투기의 지대공 미사일에 대한 IR 생존성 분석)

  • Lee, Ji-Hyun;Lee, Hyun-Jin;Myong, Rho-Shin;Choi, Seong-Man;Kim, Won-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.12
    • /
    • pp.1084-1093
    • /
    • 2017
  • As the survivability of an aircraft in the battlefield becomes a critical issue, there is a growing need to improve the survivability of the aircraft. In this study, the survivability of an UCAV associated with plume IR signature was investigated. In order to analyze the survivability of the aircraft, the lock-on range and the lethal envelope, defined as the IR detection distance of the aircraft and the range of shooting down by the missile, respectively, were first introduced. Further, a method to calculate the lethal envelope for the scenario of surface-to-air missiles including the vertical plane was developed. The study confirmed that the red zone of an UCAV shows a substantial difference in the zone size as well as the characteristics in the upward and downward directions.

Autonomous Battle Tank Detection and Aiming Point Search Using Imagery (영상정보에 기초한 전차 자율탐지 및 조준점탐색 연구)

  • Kim, Jong-Hwan;Jung, Chi-Jung;Heo, Mira
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.1-10
    • /
    • 2018
  • This paper presents an autonomous detection and aiming point computation of a battle tank by using RGB images. Maximally stable extremal regions algorithm was implemented to find features of the tank, which are matched with images extracted from streaming video to figure out the region of interest where the tank is present. The median filter was applied to remove noises in the region of interest and decrease camouflage effects of the tank. For the tank segmentation, k-mean clustering was used to autonomously distinguish the tank from its background. Also, both erosion and dilation algorithms of morphology techniques were applied to extract the tank shape without noises and generate the binary image with 1 for the tank and 0 for the background. After that, Sobel's edge detection was used to measure the outline of the tank by which the aiming point at the center of the tank was calculated. For performance measurement, accuracy, precision, recall, and F-measure were analyzed by confusion matrix, resulting in 91.6%, 90.4%, 85.8%, and 88.1%, respectively.

Computation of Flowfield and Infrared Signature in Aircraft Exhaust System for IR Reduction Design (항공기 후방동체 열유동장 및 IR 신호 예측 시스템)

  • Moon, Hyuk;Yang, Young-Rok;Chun, Soo-Hwan;Choi, Seong-Man;Myong, Rho-Shin;Cho, Tae-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.652-659
    • /
    • 2011
  • A computational system to predict flowfield and infrared signature in aircraft exhaust system is developed. As the first step, a virtual mission profile is considered and an engine is selected through a performance analysis. Then a nozzle that meets the requirement of each mission is designed. The internal flow in the exhaustion nozzle at the maximum thrust is analyzed using a state-of-the-art CFD code. In addition, a system to combine information of the skin temperature distribution of the nozzle and after-body surface with an infrared prediction code is developed. Finally, qualitative results for the infrared signature reduction design are obtained by investigating the infrared signature level under various conditions.

A Study On Cause Analysis and Improvement About Malfunction of Proximity Sensor Exposed High Temperature (근접센서의 고온 고장발생에 관한 원인분석 및 개선 연구)

  • Park, Jin-Saeng
    • Transactions of the KSME C: Technology and Education
    • /
    • v.3 no.3
    • /
    • pp.175-181
    • /
    • 2015
  • Because internal space of combat vehicle reachs about $80^{\circ}C$ at high temperature period, Proximity Sensor exposed high temperature and humidity, which has function to sense the distance and transfer signal for control unit, have enlarged sensing distance and finally locked on. Malfunction of sensing itself occur frequently, therefore we carried out cause analysis and improvement. We accomplish improvement activity secondly. Through-out many trial and error, we find out that malfunction of sensor occur at high temperature circumstance. To improve, the another Emitter Coil is added to increase voltage difference and improve sensing accuracy about 5~10 times. And we accomplish design improvement to dull temperature and humity change after increasing molding surface to add vibration and shock resistance. We prove that the improved product do not fail after enduring 136hr at $85^{\circ}C$ temperature and 85% relative humidity circumstance chamber.

A Study on the Database Design in the MDO Environment (다분야 통합환경에서의 데이터베이스 설계 연구)

  • Hwang, Jin Yong;Jeong, Ju Yeong;Lee, Jae U;Byeon, Yeong Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.25-36
    • /
    • 2003
  • Aircraft design pursues integrated design efforts by considering all design elements together. In the integrated design environment, it is crucial for the design data to be consistent, free of errorm, and most recent. Database design process consists of the analysis of the data which shall be stored and managed, the construction of the E-R Diagram, and the mapping of the database table. As a DBMS (DataBase Management System), Oracle 8i is employed to design and construct the database. The database design methodology is devised to apply for the several MDO(Multidisciplinary Design Optimization) techniques like MDF(MultiDisplinary Feasible), IDF(Individual Discipline Feasible), and CO(Collaborative Optimization). The defined process is demonstrated through a couple of design examples, including a simple numerical example and a UCAV(Unmanned Combat Aerial Vehicle) design optimization.

Operability Assessment of a Naval Vessel in Seaways Based on Seakeeping Performance and Operation Scenario (내항 성능과 운용 시나리오에 기반한 함정의 실해역 운항성 평가)

  • Choi, Sungeun;Kim, Kiwon;Kim, Hoyong;Seo, Jeonghwa;Yang, Kyung-Kyu;Rhee, Shin Hyung;Kim, Beomjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.252-261
    • /
    • 2022
  • The present study concerns assessing the operability of a surface combatant, based on the Percent-Time-Operable (PTO). For validation of the seakeeping analysis in the regular waves, the model test is first conducted in a towing tank. The seakeeping analysis results in the regular waves are expanded to the irregular waves, considering the wave spectra around the Korean peninsula and in North Pacific. The seakeeping criteria of the surface combatant in transit, combat, replenishment operation, and survival condition are defined by the literature review. An annual operation scenario of the surface combatant in two operation areas, i.e., advance speed and wave direction, are combined with the seakeeping analysis results to assess PTO. The main constraints of operability of the surface combatant are identified as the pitch angle and vertical velocity at the helicopter deck.

An Experimental Study on the Measurement of Water Surface Discharge Temperature of High-Temperature Bubble Injected into Cylindrical Acrylic Water Tank (원통 아크릴 수조로 주입된 고온 기포의 수면 배출 온도 측정에 관한 실험적 연구)

  • SeokTae Yoon;YongJin Cho
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.6
    • /
    • pp.99-105
    • /
    • 2023
  • Submarines, which require a high degree of survivability, are among the most critical combat weapon systems in military strategic assets. Conventional submarines need air to operate their propulsion systems. Exhaust gases released into the water during snorkel navigation heat the surrounding fluid, producing a temperature wake. This wake, in turn, reduces the submarine's survivability. In this study, we conducted a preliminary experiment on the temperature traces formed by an underwater submarine's waste discharge. For this purpose, we collected propulsion system and navigation condition data from domestically introduced submarines and developed an experimental system to measure the temperature traces. As a result, we observed that high-temperature bubbles injected into the tank broke down into smaller sizes, and their temperature dropped to levels similar to the surrounding fluid. This observation was confirmed using a thermocouple sensor. Consequently, the thermal imaging system designed to measure the temperature trace of the water's surface did not detect any significant temperature traces.