• Title/Summary/Keyword: Combat System Architecture

Search Result 51, Processing Time 0.023 seconds

A Study for Modeling Combat System Architecture With UPDM and UML (UPDM&UML을 이용한 함정전투체계 모델링 방안에 대한 연구)

  • Park, Ji-Eun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.07a
    • /
    • pp.21-24
    • /
    • 2017
  • 본 논문은 함정 전투체계의 아키텍처를 설계하고 세부 기능을 분석 및 구현하기 위한 방안 연구를 위해 작성되었다. 함정 전투체계와 같이 복잡도 높은 대규모 시스템에서 문서 산출물에 근거한 개발은 산출물 간 유기적인 연결이 어렵고 요구조건의 변화에 따른 영향 요소 식별 및 반영이 어렵다는 단점을 갖는다. 이에 대한 대안으로 제시된 모델 기반 개발 방법론을 함정 전투체계에 적용하기 위해 미 국방 분야 표준 아키텍처인 DoDAF와 이를 지원하는 UPDM, 시스템 엔지니어링과 소프트웨어 엔지니어링 분야의 모델링을 지원하는 SYSML/UML을 살펴보고 함정 전투체계에 적합한 모델 구성 및 각 개발 단계 별 모델링을 수행하는 절차에 대한 가이드라인을 제시한다.

  • PDF

A Study on the Architecture for Avionics System of Jet Fighters (제트 전투기의 항공전자 시스템 아키텍처에 관한 연구)

  • Gook, Kwon Byeong;Won, Son Il
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.86-96
    • /
    • 2022
  • The development trend of jet fighter's avionics system architecture is the digitization of subsystem component functions, increased RF sensor sharing, fiber optic channel networks, and modularized integrated structures. The avionics system architecture of the fifth generation jet fighters (F-22, F-35) has evolved into an integrated modular avionics system based on computing function integration and RF integrated sensor systems. The integrated modular avionics system of jet fighters should provide improved combat power, fault tolerance, and ease of jet fighter control. To this aim, this paper presents the direction and requirements of the next-generation jet fighter's avionics system architecture through analysis of the fifth generation jet fighter's avionics system architecture. The core challenge of the integrated modularized avionic system architecture requirements for next-generation fighters is to build a platform that integrates major components and sensors into aircraft. In other words, the architecture of the next-generation fighters is standardization of systems, sensor integration of each subsystem through open interfaces, integration of functional elements, network integration, and integration of pilots and fighters to improve their ability to respond and control.

Vetronics Design Using Realtime Integrated Control Techniques (실시간 통합제어기법을 이용한 차량전자화 설계)

  • Lee, Seok-Jae;Min, Ji-Hong;Lyou, Joon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.89-98
    • /
    • 2008
  • The vetronics is necessarily required for enhancement of the operational capability and optimization of the system architecture. In this paper, we presents the realtime control methods for the vetronics of the fighting vehicles. We proposed the data distribution based on standard bus and computer resource for realtime and integrated control of the system. Embedded computers are designed considering extensibility and reliability of the system. The integrated display improves the operator's capability. We applied the network centric battle management and digital power control with intelligent switching elements to increase cooperated combat efficiency and reliability. To show the feasibility of the presented design schemes, the vetronics has been implemented and applied to a real fighting vehicle.

A Study on a Manpower Forecasting Model for Naval Ships (해군 함정 승조원 수 예측 모형에 관한 연구)

  • Hwang, In ha;Jeong, Yeon hwan;Lee, Ki hyun;Kang, Seok joong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • The low birthrate and the need for national defense reform in Korea drive the Navy to develop efficient human resource planning such as a manpower forecasting model. However, to our knowledge, there is no study exploring the manpower forecasting model for naval ships in Korea. The purpose of this paper is to develop a model for forecasting manpower demand in naval ships. Data for analyses were drawn from 19 ships in the Korean Navy. Results indicate that mission type is significantly related to the number of manpower. Specifically, battleships need the more manpower than the battle support ships. The results also showed that the weight of hull structure-engine and the weight of the weapons system significantly increased the number of manpower. However, the weight of the combat system was not significant. In addition, whereas the automation level of hull structure-engine and the automation level of weapon system was found to be negatively related to the number of manpower, the automation level of combat system was positively related to it. The model developed here contributes to an advanced human resource planning of the Korean Navy. Implications, limitations, and directions for future research are discussed.

Designing Integrated Diagnosis Platform for Heterogeneous Combat System of Surface Vessels (다기종 수상함 전투체계의 통합 진단 플랫폼 설계)

  • Kim, Myeong-hun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.186-188
    • /
    • 2021
  • The architecture named IDPS is a design concept of web-based integrated platform for heterogeneous naval combat system, which accomplishes efficiency(decreasing complexity) of diagnosis process and reduces time to diagnose system. Each type of surface vessel has its own diagnostic processes and applications, and that means it also requires its own diagnostic engineer(inefficiency in human resource management). In addition, man-based diagnostic causes quality issues such as difference approach of log analysis in accordance with engineer skills. Thus In this paper, we designed integrated diagnostic platform named IDPS with simplified common process regardless of type of surface vessel and we reinforced IDPS with status decision algorithm(SDA) that judges current software status of vessel based on gathered lots of logs. It will enable engineers to diagnose system more efficiently and to use more resources in utilizing SDA-analyzed diagnostic results.

  • PDF

Reverse Simulation Software Architecture for Required Performance Analysis of Defense System (국방 시스템의 요구 성능 분석을 위한 역 방향 시뮬레이션 소프트웨어 아키텍처)

  • Hong, Jeong Hee;Seo, Kyung-Min;Kim, Tag Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.750-759
    • /
    • 2015
  • This paper focuses on reverse simulation methods to find and analyze the required performance of a defense system under a given combat effectiveness. Our approach is motivated that forward simulation, that traditionally employs the effectiveness analysis of performance alternatives, is not suitable for resolving the above issue because it causes a high computational cost due to repeating simulations of all possible alternatives. To this end, the paper proposes a reverse simulation software architecture, which consists of several functional sub-modules that facilitate two types of reverse simulations according to possibility of inverse model design. The proposed architecture also enable to apply various search algorithms to find required operational capability efficiently. With this architecture, we performed two case studies about underwater and anti-air warfare scenarios. The case studies show that the proposed reverse simulation incurs a smaller computational cost, while finding the same level of performance alternatives compared with traditional forward simulation. Finally we expect that this study provides a guide those who desire to make decisions about new defense systems development.

Development of Korean Warrior Platform Architecture (한국형 워리어플랫폼 아키텍처 개발 연구)

  • Kim, Wukki;Shin, Kyuyong;Cho, Seongsik;Baek, Seungho;Kim, Yongchul
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.5
    • /
    • pp.111-117
    • /
    • 2021
  • With the rapid development of advanced science and technology including the 4th industrial revolution, the future battlefield environment is evolving at a rapid pace. In order to actively respond to issues such as reduction of military resources and shortening of service period, and to emphasize the realization of human-centered values, the Ministry of National Defense is re-establishing the role of the Army in accordance with the defense reform and is promoting the Warrior Platform, a next-generation individual combat system. In this paper, we intend to present the optimal warrior platform architecture suitable for the Korean Army by realizing the concept of future ground operations and analyzing overseas cases. We analyze the essential abilities required of individual combatants and the abilities required for each unit type, and specifically presents a plan for integration and linkage of warrior platform equipment. We also propose an efficient business promotion direction by presenting the data flow and power connection diagram between the devices that need integration and interworking.

The Design and implementation of LVC Integrated Architecture Technology building division-level L-V-C Interoperability Training System (사단급 L-V-C연동훈련체계 구축을 위한 LVC통합아키텍쳐기술 설계 및 구현)

  • Won, Kyoungchan;Koo, JaHwan;Lee, Hojun;Kim, Yong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.334-342
    • /
    • 2021
  • In Korea, the training is performed through independent environments without interoperability among L-V-C systems. In the L system, training for large units is limited due to civil complaints at the training grounds and road restrictions. The V system is insufficient in training related to tactical training, and the C system lacks practicality due to a lack of combat friction elements. To achieve synchronicity and integration training between upper and lower units, it is necessary to establish a system to ensure integrated training for each unit by interoperating the currently operating L, V, and C systems. The interoperability between the C-C system supports Korea-US Combined Exercise. On the other hand, the actual development of the training system through the interoperability of L, V, and C has not been made. Although efforts are being made to establish the L, V, and C system centering on the Army, the joint composite battlefield and LVC integrated architecture technology are not yet secured. Therefore, this paper proposes a new plan for the future training system by designing and implementing the LVC integrated architecture technology, which is the core technology that can build the L-V-C interoperability training system. In conclusion, a division-level L-V-C interoperability training system can be established in the future by securing the LVC integrated architecture technology.

Analysis of Improving Requirement on Military Security Regulations for Future Command Control System (미래 지휘통제체계를 위한 보안 규정 개선 요구사항 분석)

  • Kang, Jiwon;Moon, Jae Woong;Lee, Sang Hoon
    • Convergence Security Journal
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 2020
  • The command control system, like the human brain and nervous system, is a linker that connects the Precision Guided Missile(PGR) in information surveillance and reconnaissance (ISR) and is the center of combat power. In establishing the future command and control system, the ROK military should consider not only technical but also institutional issues. The US Department of Defense establishes security policies, refines them, and organizes them into architectural documents prior to the development of the command and control system. This study examines the security architecture applied to the US military command control system and analyzes the current ROK military-related policies (regulations) to identify security requirements for the future control system. By grouping the identified security requirements, this study identifies and presents field-specific enhancements to existing security regulations.

Operability Assessment of a Naval Vessel in Seaways Based on Seakeeping Performance and Operation Scenario (내항 성능과 운용 시나리오에 기반한 함정의 실해역 운항성 평가)

  • Choi, Sungeun;Kim, Kiwon;Kim, Hoyong;Seo, Jeonghwa;Yang, Kyung-Kyu;Rhee, Shin Hyung;Kim, Beomjin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.252-261
    • /
    • 2022
  • The present study concerns assessing the operability of a surface combatant, based on the Percent-Time-Operable (PTO). For validation of the seakeeping analysis in the regular waves, the model test is first conducted in a towing tank. The seakeeping analysis results in the regular waves are expanded to the irregular waves, considering the wave spectra around the Korean peninsula and in North Pacific. The seakeeping criteria of the surface combatant in transit, combat, replenishment operation, and survival condition are defined by the literature review. An annual operation scenario of the surface combatant in two operation areas, i.e., advance speed and wave direction, are combined with the seakeeping analysis results to assess PTO. The main constraints of operability of the surface combatant are identified as the pitch angle and vertical velocity at the helicopter deck.