• Title/Summary/Keyword: Combat Entity Modeling

Search Result 6, Processing Time 0.019 seconds

Modeling Combat Entity with POMDP and DEVS (POMDP-DEVS를 활용한 전투 개체 모델링)

  • Bae, Jang Won;Lee, Kanghoon;Kim, Hyeoneun;Lee, Jun Seok;Goh, Bongseok;Nam, Bowon;Moon, Il-Chul;Kim, Kee-Eung;Park, Jaehyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.39 no.6
    • /
    • pp.498-516
    • /
    • 2013
  • Combat Modeling and Simulation (M&S) is significant to decision makers who predict the next direction of wars. Classical methodologies for combat M&S aimed to describe the exact behaviors of combat entities from military doctrines, yet they had a limitation of describing reasonable behaviors of combat entities that did not appear in the doctrines. Hence, this paper proposed a synthesizing modeling methodology for combat entity models considering both 1) the exact behaviors using descriptive modeling and 2) the reasonable behaviors using prescriptive modeling. With the proposed methodology, combat entities can represent a reality for combat actions rather than the classical methodologies. Moreover, the experiment results using the proposed methodology were significantly different from the results using the classical methodologies. Through the analyses of the experiment results, we showed that the reasonable behaviors of combat entities, which are not specified in the doctrines, should be considered in combat M&S.

Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 1 : Conceptual Model Design (성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제1부 : 개념 모델 설계)

  • Seo, Kyung-Min;Kim, Tag Gon;Song, Hae-Sang;Kim, Jung Hoon;Chung, Suk Moon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.223-234
    • /
    • 2014
  • This paper proposes a flexible and highly reusable modeling methodology for a next-generation combat entity which enables joint analysis of performance/engagement effectiveness. According to the scope of the proposed work, the paper is divided into two parts; Part 1 focuses on a conceptual model design, whereas Part 2 proposes detailed model specification and implementation. In Part 1, we, first, classify the combat entity model as combat logic and battlefield function sub-models for joint analysis. Based on the sub-models, we propose two dimensional model partition method, which creates six groups of a single combat entity model by two dimensions: three-activity and two-abstraction. This grouping enables us to reconfigure the combat entity model by sharing the same interface within the group, and the same interface becomes the fundamental basis of the flexible model composition. Furthermore, the proposed method provides a model structure that effectively reflects the real world and maximizes the multi-level reusability of a combat entity model. As a case study, we construct a model design for anti-surface ship warfare. The case study proves enhancement of model reusability in the process of scenario expansion from pattern running to wire guided torpedo operations.

Combat Entity Based Modeling Methodology to Enable Joint Analysis of Performance/Engagement Effectiveness - Part 2 : Detailed Model Design & Model Implementation (성능/교전 효과도의 상호 분석이 가능한 전투 개체 기반의 모델링 방법론 - 제2부 : 상세 모델 설계 및 모델 구현)

  • Seo, Kyung-Min;Choi, Changbeom;Kim, Tag Gon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.235-247
    • /
    • 2014
  • Based on two dimensional model partition method proposed in Part 1, Part 2 provides detailed model specification and implementation. To mathematically delineate a model's behaviors and interactions among them, we extend the DEVS (Discrete Event Systems Specification) formalism and newly propose CE-DEVS (Combat Entity-DEVS) for an upper abstraction sub-model of a combat entity model. The proposed CE-DEVS additionally define two sets and one function to reflect essential semantics for the model's behaviors explicitly. These definitions enable us to understand and represent the model's behaviors easily since they eliminate differences of meaning between real-world expressions and model specifications. For model implementation, upper abstraction sub-models are implemented with DEVSim++, while the lower sub-models are realized using the C++ language. With the use of overall modeling techniques proposed in Part 1 and 2, we can conduct constructive simulation and assess factors about combat logics as well as battle field functions of the next-generation combat entity, minimizing additional modeling efforts. From the anti-torpedo warfare experiment, we can gain interesting experimental results regarding engagement situations employing developing weapons and their tactics. Finally, we expect that this work will serve an immediate application for various engagement warfare.

Gun-oriented Engagement Simulation System (함포교전 시뮬레이션 시스템)

  • Lee, Dong-Hoon;Kim, Cheol-Ho;Kim, Tae-Su
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.78-85
    • /
    • 2007
  • A gun is still one of the major weapons of a combat ship. To assess the ship's fire control capability which is influenced by tracking system, fire control algorithm, gun, the ship itself, target behavior, environment and engagement situation, simulation system for gun-oriented engagement for surface ship is needed. This paper proposes the process for designing and implementing a gun-oriented engagement simulation system using DEVS(Discrete Event Simulation Specification), which is a formalism based on the set theory. It consists of the following activities : 1) analyzing the characteristics of a gun-oriented engagement, 2) constructing the deterministic model of the combat ship of study with DEVS, 3) modeling properties of each entity showing as stochastic errors. With this process, the gun-oriented engagement simulation system is developed and applied for the combat system under development.

Case Studies on Planning and Learning for Large-Scale CGFs with POMDPs through Counterfire and Mechanized Infantry Scenarios (대화력전 및 기계화 보병 시나리오를 통한 대규모 가상군의 POMDP 행동계획 및 학습 사례연구)

  • Lee, Jongmin;Hong, Jungpyo;Park, Jaeyoung;Lee, Kanghoon;Kim, Kee-Eung;Moon, Il-Chul;Park, Jae-Hyun
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.6
    • /
    • pp.343-349
    • /
    • 2017
  • Combat modeling and simulation (M&S) of large-scale computer generated forces (CGFs) enables the development of even the most sophisticated strategy of combat warfare and the efficient facilitation of a comprehensive simulation of the upcoming battle. The DEVS-POMDP framework is proposed where the DEVS framework describing the explicit behavior rules in military doctrines, and POMDP model describing the autonomous behavior of the CGFs are hierarchically combined to capture the complexity of realistic world combat modeling and simulation. However, it has previously been well documented that computing the optimal policy of a POMDP model is computationally demanding. In this paper, we show that not only can the performance of CGFs be improved by an efficient POMDP tree search algorithm but CGFs are also able to conveniently learn the behavior model of the enemy through case studies in the scenario of counterfire warfare and the scenario of a mechanized infantry brigade's offensive operations.

A Study on Agent based Simulation System Architecture for the Engagement of Ground Weapon Systems (지상무기체계 교전 모의를 위한 에이전트 기반 시뮬레이션 시스템 아키텍처 설계 연구)

  • Hwam, Won K.;Chung, Yongho;Na, Jaeho;Park, Sang C.
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.81-90
    • /
    • 2012
  • Presented in this paper is a study for construction of a simulation system for the engagement of ground weapon systems. This paper proposes architecture for the simulation system based on agent simulation design methodology. Every entity of the proposed architecture is developed by assembling modularized agent components, and it enhances the reusability and composability of the entity. Consequently, time, costs, and efforts that are required to develop a new simulation system is able to be reduced by the enhancement. In the case of ground engagement simulation, it is very important to reflect environmental effects. Synthetic battlefield of the proposed architecture has environmental data of the battlefield and interacts with entities in the simulation system. The proposed architecture based simulation system can build swiftly various simulation models by the objectives and derive reasonable results from behaviors of entities that include environmental effects. This paper contains the construction of an example system based on the proposed architecture to verify the advantages of the architecture.