• Title/Summary/Keyword: Column-and-row factoring process

Search Result 1, Processing Time 0.014 seconds

Estimation of Sodium Hydroxide Waste Origin-Destination Matrices for Preventing Hazardous Material Transportation Disasters

  • Kim, Geun-Young;Jung, Tae-Hwa;Kim, Sang-Won
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.73-79
    • /
    • 2009
  • Hazardous materials (HazMats) are substances that are flammable, explosive, toxic, or harmful, if released into the environment. Since the transportation of HazMats increases in many developed countries, HazMat transportation has the key function in the process of HazMat usage to trace information of production, storage, shipment, usage, and waste disposal. The Korean Ministry of Environment (KMOE) and the National Emergency Management Agency (NEMA) have developed many laws, regulations, and standards for hazardous materials. However, the Korean HazMat laws, regulations, and standards do not guarantee accurate information of HazMat origin-destination (O-D) shipments, though the HazMat O-D movement is the critical information in safety and security of HazMat transportation. The objectives of this research are: (1) to investigate emerging and recurrent issues in Korean HazMat transportation, and (2) to develop the estimation method of O-D matrices for hazardous materials under limited data sets. The sodium hydroxide waste shipment among forty candidate HazMats is selected as the sample research case. The growth-factor method is applied to estimate the 2005 O-D matrix of sodium-hydroxide waste shipment. The column-and-row factoring process is used to calibrate the estimated sodium-hydroxide O-D matrix. The result shows the applicability of the O-D estimation process for hazardous materials. The Sodium Hydroxide Waste Origin-Destination Matrix is obtained to trace routes and paths of the Sodium Hydroxide transportation.