• 제목/요약/키워드: Column size

검색결과 754건 처리시간 0.028초

Numerical simulation of columns with un-bonded reinforcing bars for crack control

  • Chen, G.;Fukuyama, H.;Teshigawara, M.;Etoh, H.;Kusunoki, K.;Suwada, H.
    • Structural Engineering and Mechanics
    • /
    • 제26권4호
    • /
    • pp.409-426
    • /
    • 2007
  • Following previous work carried out in Building Research Institute in Japan, finite element analyses of conceptual column designs are performed in this paper. The effectiveness of the numerical model is evaluated by experimental tests and parametric studies are conducted to determine influential factors in conceptual column designs. First, three different column designs are analysed: bonded, un-bonded, and un-bonded with additional reinforcing bars. The load-displacement curves and cracking patterns in concrete are obtained and compared with experimental ones. The comparisons indicate that the finite element model is able to reflect the experimental results closely. Both numerical and experimental results show that, the introduction of un-bonded zones in a column end can reduce cracking strains, accordingly reduce the stiffness and strength as well; the addition of extra reinforcement in the un-bonded zones can offset the losses of the stiffness and strength. To decide the proper length of the un-bonded zones and the sufficient amount of the additional reinforcing bars, parametric studies are carried out on their influences. It has been found that the stiffness of un-bonded designs slightly decreases with increasing the length of the un-bonded zones and increases with the size of the additional reinforcing bars.

Rhodococcus fascians를 이용한 모래 컬럼내 디젤유 분해 (Biodegradation of Diesel by Rhodococcus fascians in Sand Column)

  • 문준형;구자룡;윤현식
    • KSBB Journal
    • /
    • 제26권1호
    • /
    • pp.1-6
    • /
    • 2011
  • Contamination of soils, groundwater, air and marine environment with hazardous and toxic chemicals is major side effect by the industrialization. Bioremediation, the application of microorganism or microbial processes to degrade environmental contaminant, is one of the new environmental technologies. Because of low water solubility and volatility of diesel, bioremediation is more efficient than physical and chemical methods. The purpose of this study is biodegradation of diesel in sand by using Rhodococcus fascians, a microorganism isolated from petroleum contaminated soil. This study was performed in the column containing sand obtained from sea sides. Changes in biodegradability of diesel with various flow rates, inoculum sizes, diesel concentrations, and pH were investigated in sand column. The optimal condition for biodegradation of diesel by R. fascians in sand column system was initial pH 8 and air flow rate of 30 mL/min. Higher diesel degradation was achieved at larger inoculum size and the diesel degradation by R. fascians was not inhibited by diesel concentration up to 5%.

마이크로 칼럼의 전자 방출원 위치 오차의 영향 (Effect of the Off-axis distance of the Electron Emitting Source in Micro-column)

  • 이응기
    • 반도체디스플레이기술학회지
    • /
    • 제9권1호
    • /
    • pp.17-21
    • /
    • 2010
  • Currently miniaturized electron-optical columns find their way into electron beam lithography systems. For better lithography process, it is required to make smaller spot size and longer working distance. But, the micro-columns of the multi-beam lithography system suffer from chromatic and spherical aberration, even when the electron beam is exactly on the symmetric axis of the micro-column. The off-axis error of the electron emitting source is expected to become worse with increasing off-axis distance of the focusing spot. Especially the electron beams far from the system optical axis have a non-negligible asymmetric intensity distribution in the micro-column. In this paper, the effect of the off-axis e-beam source is analyzed. To analyze this effect is to introduce a micro-column model of which the e-beam emitting source is aligned with the center of the electron beam by shifting them perpendicular to the system optical axis. The presented solution can be used to analysis the performance of the multi-electron-beam system. The performance parameters, such as the working distances and the focusing position are obtained by the computational simulations as a function of the off-axis distance of the emitting source.

기둥으로 지지된 슬래브교(橋)의 모멘트 산정(算定)에 관한 연구(硏究) (Simplified Bending Moment Analysis in Slab Bridges supported by Column Type Piers)

  • 김영인;이채규;김우
    • 대한토목학회논문집
    • /
    • 제12권3호
    • /
    • pp.17-24
    • /
    • 1992
  • 철근(鐵筋)콘크리트 슬래브교(橋) 설계시(設計時) 교각(橋脚)을 T형 및 ${\Pi}$형식으로 취하는 것보다 기둥만으로 슬래브를 직접 지지(支持)하도록 함으로써 유효공간(有效空間) 확보 뿐만 아니라 슬래브 자체(自體)의 내하력(耐荷力)을 이용함으로써 구조적(構造的)인 효율측면(效率側面)에도 유리하다. 그러나 기둥으로 지지된 슬래브교의 설계를 위한 휨모멘트계산은 아직 체계화(體系化)되어 있지 않은 상태이다. 중간지지점(中間支持點)의 종방향(縱方向) 최대휨모멘트를 유효폭개념(有效幅槪念)을 적용하여 가상지간(假像支間)을 이용한 단순보해석으로 간단히 구할 수 있는 방법(方法)에 대하여 연구하고 유효폭을 수식화(數式化)하였다. 주요변수(主要變數)는 지간(支間), 교폭(橋幅), 슬래브 두께 및 기둥단면(斷面)으로 하고 유한요소법(有限要素法)을 이용하여 단면력(斷面力)의 변화를 조사하였다.

  • PDF

포화 컬럼실험에서 이온강도 변화 및 유기물질 출현에 의한 PVP로 코팅된 은나노 입자의 거동 연구 (Transport behavior of PVP (polyvinylpyrrolidone) - AgNPs in saturated packed column: Effect of ionic strength and HA)

  • 허지용;한종훈;허남국
    • 상하수도학회지
    • /
    • 제30권3호
    • /
    • pp.263-270
    • /
    • 2016
  • Recent Engineered nanoparticles were increasingly exposed to environmental system with the wide application and production of nanomaterials, concerns are increasing about their environmental risk to soil and groundwater system. In order to assess the transport behavior of silver nanoparticles (AgNPs), a saturated packed column experiments were examined. Inductively coupled plasma-mass spectrometry and a DLS detector was used for concentration and size measurement of AgNPs. The column experiment results showed that solution chemistry had a considerable temporal deposition of AgNPs on the porous media of solid glass beads. In column experiment, comparable mobility improvement of AgNPs were observed by changing solution chemistry conditions from salts (in both NaCl and $CaCl_2$ solutions) to DI conditions, but in much lower ionic strength (IS) with $CaCl_2$. Additionally, the fitted parameters with two-site kinetic attachment model form the experimental breakthrough curves (BTCs) were associated that the retention rates of the AgNPs aggregates were enhanced with increasing IS under both NaCl and $CaCl_2$ solutions.

Experimental study on seismic performance of partial penetration welded steel beam-column connections with different fillet radii

  • Ge, Hanbin;Jia, Liang-Jiu;Kang, Lan;Suzuki, Toshimitsu
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.851-865
    • /
    • 2014
  • Full penetration welded steel moment-resisting frame (SMRF) structures with welded box sections are widely employed in steel bridges, where a large number of steel bridges have been in operation for over fifty years in Japan. Welding defects such as incomplete penetration at the beam-column connections of these existing SMRF steel bridge piers were observed during inspection. Previous experiments conducted by the authors' team indicate that gusset stiffeners (termed fillets in this study) at the beam-web-to-column-web joint of the beam-column connections may play an important role on the seismic performance of the connections. This paper aims to experimentally study the effect of the fillet radius on seismic performance of the connections with large welding defects. Four specimens with different sizes of fillet radii were loaded under quasi-static incremental cyclic loading, where different load-displacement relations and cracking behaviors were observed. The experimental results show that, as the size of the fillet radius increases, the seismic performance of the connections can be greatly improved.

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.

Experimental study of the behavior of beam-column connections with expanded beam flanges

  • Ma, Hongwei;Wang, Jiwei;Lui, Eric M.;Wan, Zeqing;Wang, Kun
    • Steel and Composite Structures
    • /
    • 제31권3호
    • /
    • pp.319-327
    • /
    • 2019
  • This paper describes an experimental study of steel beam-column connections with or without expanded beam flanges with different geometries. The objectives of this study are to elucidate the cyclic behavior of these connections, identify the location of the plastic hinge zone, and provide useful test data for future numerical simulations. Five connection specimens are designed and tested under cyclic load. The test setup consists of a beam and a column connected together by a connection with or without expanded beam flanges. A constant axial force is applied to the column and a time varying point load is applied to the free end of the beam, inducing shear and moment in the connection. Because the only effect to be studied in the present work is the expanded beam flange, the sizes of the beam and column as well as the magnitude of the axial force in the column are kept constant. However, the length, width and shape of the expanded beam flanges are varied. The responses of these connections in terms of their hysteretic behavior, failure modes, stiffness degradation and strain variations are experimentally obtained and discussed. The test results show that while the influence of the expanded beam flanges on hysteretic behavior, stiffness degradation and energy dissipation capacity of the connection is relatively minor, the size of the expanded beam flanges does affect the location of the plastic hinge zone and strain variations in these beam-column joints. Furthermore, in terms of ductility, moment and rotational capacities, all five connections behave well. No weld fracture or premature failure occurs before the formation of a plastic hinge in the beam.

토양 칼럼의 경계흐름과 계면활성제가 수리전도도에 미치는 영향연구 (Effects of Column Boundary Flow and Surfactant Contents on Soil Hydraulic Conductivity)

  • 정승우;주병규
    • 유기물자원화
    • /
    • 제17권1호
    • /
    • pp.73-79
    • /
    • 2009
  • 수리전도도는 다공성매체 시스템의 중요한 특성인자이다. 수리전도도를 측정하는 방법은 실외측정방법과 실내측정방법이 있다. 수리전도도의 실내측정은 일반적으로 투수측정기를 이용한다. 기존의 투수측정방식으로 산정한 수리전도도는 경계흐름의 영향을 고려하지 않고 모든 유체가 수직으로 이동한다는 가정으로 결정되었다. 하지만 실제 토양에서 유체는 수직, 좌우 방향으로 이동할 수 있다. 본 연구에서는 경계흐름을 배제한 투수계를 이용하여 경계흐름이 수리전도도에 미치는 영향을 평가하였다. 실험결과 기존방식으로 산정한 수리전도도에 비해 경계흐름을 배제한 수리전도도가 약 1/3에 해당하였다. 투수측정기를 이용한 수리 전도도 측정에 있어 경계흐름에 대한 영향을 고려한 수리전도도 결정이 필요하다. 또한 토양 입경과 계면활성제가 수리전도도에 미치는 영향을 파악하였다. 토양입경과 수리전도도는 비례하는 것으로 나타났으며 계면활성제는 수리전도도를 감소시키는 것으로 확인되었다. 계면활성제 농도가 증가할수록 수리전도도는 보다 많이 감소하였다. 수리전도도를 결정하는 물리적 특성을 평가한 결과 유체의 점도가 가장 큰 영향을 미치는 것으로 나타났다.

  • PDF

기포탑 반응기에서 조작변수가 meta 붕산 생성반응 전환율에 미치는 영향 (Effects of Operating Variables on the Conversion of Meta Boric Acid Formation in a Bubble Column Reactor)

  • 조수행;도재범;강용
    • 공업화학
    • /
    • 제7권3호
    • /
    • pp.573-579
    • /
    • 1996
  • 공업적 기포탑 반응기의 설계, scale-up, 조절, 개발 및 운전에 매우 긴요한 기초자료들을 얻기 위하여 실험 실적 규모의 기포탑 반응기에서 각 실험변수들이 ortho 붕산으로부터 meta 붕산의 생성 반응전환율에 미치는 영향을 연구하였다. 반응시간 및 압력, 반응물의 입자크기 및 기체 유속 등을 실험변수로 선택하였으며, 이들 실험변수들이 기포탑 반응기내의 기체 체류량에 미치는 영향들을 반응의 전환율과 연계하여 또한 검토하였다. 연구의 결과, 다음과 같은 최적 반응조건을 얻을 수 있었다 : 반응시간 ; 35~40(분), 반응압력 ; 92~95(kPa), 반응입자의 크기 ; $0.6{\times}10^{-3}(m)$ 이하, 기체 유속 ; 0.07~0.08(m/s).

  • PDF