• Title/Summary/Keyword: Column leaching test

Search Result 45, Processing Time 0.026 seconds

Potential Environmental Influences in Soil by Accidental Fluorine (F) Leakage, Using Leaching Test (용출시험을 통한 불산 누출사고지역의 토양 내 불소(F)의 거동특성)

  • Kim, Doyoung;Lee, Junseok;Kwon, Eunhye;Lee, Hyun A;Yoon, Hye-On;Lee, Sanghoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.4
    • /
    • pp.234-239
    • /
    • 2015
  • Various leaching tests were applied to the soil affected by accidental leakage of HF in an industrial area in Korea. Three different leaching methods including pH-stat, continuous batch leaching, and column tests were adopted to assess leaching characteristics and mobility of fluorine(F) in soil and the potential risks to ecosystem. Both natural and spiked samples were used for the leaching tests. F concentrations in the batch tests increased by leaching rapidly in the early stage of leaching and then maintained rather constant levels. Column leaching test also show similar result to that of the batch test. pH also controlled the leaching behavior of the soil. With increasing pH, more F was released in the pH-stat test. This is mainly due to the competition and exchange with hydroxyl ions, as pH increase to the alkaline range. Most of the F released by the accident seem to have removed in the very early stage of leaching, whereas some natural proportion from soil minerals are thought to have been released very slowly. Therefore, little F released during the accident remained, based on the results of this study on the samples after two years of the accident. We could conclude that soil contaminated by external effects such as chemical accidents should be managed immediately, especially with F.

Evaluation of Leaching Potential of Heavy Metals from Bottom Ashes Generated in Coal-fired Power Plants in Korea (국내 석탄 화력발전소 배출 바닥재의 중금속 용출 가능성 평가)

  • Park, Dongwon;Choi, Hanna;Woo, Nam C.;Kim, Heejoung;Chung, David
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.32-40
    • /
    • 2013
  • This study was objected to evaluate the potential impact on the groundwater environment of the coal bottom ash used as fill materials on the land surface. From four coal-fired power plants, bottom-ashes were collected and analyzed through sequential extraction and column leaching tests following the meteoric water mobility procedure. The column tests shown leaching heavy metals including Pb, As, B, Cu, Zn, Mn, Ni, Ba, Sr, Sb, V, Cr, Mo, and Hg. The relatively high concentrations of B, Sr, Ba, and V in leachate were attributed to both the higher concentrations in the bottom ash and the relatively higher portion of leachable state, sorbed state, of metals. Bottom-ash samples from the D-plant only show high leaching potential of sulfate ($SO_4$), probably originated from the coal-combustion process, called the Fluidized Bed Combustion. Consequently, to manage recycling bottom ashes as fill materials, an evaluation system should be implemented to test the leaching potentials of metals from the ashes considering the absolute amount of metals and their state of existence in ashes, and the coal-combustion process.

Long-term Leaching Characteristics of Lead Contaminated Soils treated with Soluble Phosphate (액상인산염으로 처리된 납 오염토양 복원의 장기용출 특성)

  • Lee Eui-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.453-457
    • /
    • 2006
  • A long-term leaching column experiment was performed to evaluate the teachability of the stabilized lead-contaminated soil using soluble phosphate. The study shows that Pb in the leachate was little detected and the remaining $PO_4-P$ concentration kept below 0.1 mg/L due to the formation of geochemically stable lead phosphate minerals from the reactions of labile soil Pb forms with the added soluble phosphate salt. After the experiment, there was no Pb migration from the top to the bottom of the stabilized soil column. But the Pb concentrations of the 12 soil samples from the control column decreased with the increase of the soil depth.

  • PDF

Evaluating germination of lettuce and soluble organic carbon leachability in upland sandy loam soil applied with rice husk and food waste biochar (왕겨 바이오차 및 음식물쓰레기 바이오차가 밭 사양토에서 상추발아 및 수용성 유기탄소 용출에 미치는 영향 평가)

  • Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.369-377
    • /
    • 2014
  • This study was carried out to evaluate the effect of rice husk (RHB) and food waste biochar (FWB) on upland soil with sandy loam texture, in terms of physico-chemical analysis, lettuce seed germination test, and orgainc carbon leaching experiment. RHB and FWB had different physico-chemical properties each other. Carbon to nitrogen ratio (C/N ratio) of RHB was 32, showing two times higher than that of FWB. FWB had high salt and heavy metal content, compared to RHB. This is probably due to different ingredients and production processing between two biochars each other. Results of germination test with Lettuce showed lower germination rate when FWB was applied because of higher salt concentration compared to control and RHB. Organic carbon leaching test using saturated soil column (${\Phi}75{\times}h75mm$) with $10MT\;ha^{-1}$ biochar application rate, showed higher saturated hydraulic conductivity in rice husk biochar treatment column, compared to control and food waste biochar treatment. The highest total organic carbon concentration in column effluent was lower than those in both of rice husk biochar and food waste biochar, whereas the differences was negligible after 9 pore volumes of effluent. Consequently, biochars from byproducts such as rice husk and food waste in sandy loam textured upland soil could enhance a buffer function such as reduction of leaching from soil, but the harmful ingredient to crops such as high salt and heavy metals could limit the agricultural use of biochars.

In-situ Stabilization of Heavy Metal Contaminated Farmland Soils Near Abandoned Mine, using Various Stabilizing Agents: Column Test Study (폐광산 주변 중금속 오염 농경지 토양복원을 위한 다양한 첨가제의 안정화 효율 비교: 컬럼시험연구)

  • Lee, Sang-Hoon;Cho, Jung-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.4
    • /
    • pp.45-53
    • /
    • 2009
  • This study concerned remediation of heavy metal contaminated farmland soils near abandoned mine, using stabilization method, with particular emphasis on the remediating the soils contaminated with multi-elements. In this study, stabilizing heavy metals based on 'In-situ chemical fixation' has been applied to the soil collected from an abandoned mine in Korea, using column test, with various stabilizing agents, including $FeSO_4$, $KMnO_4$, sludge (collected from coal mine drainage treatment pond), zero-valent iron (ZVI), zeolite and $CaCO_3$. Sixty five-days operation of the flow-through columns yield $FeSO_4\;+\;KMnO_4$ and zeolite are efficient on reducing As leaching from the soil. ZVI and sludge are reducing the leaching of Cu. Although $FeSO_4\;+\;KMnO_4$ seem to be efficient for most heavy metals, high pH in the initial stage of test enabled high leaching of the heavy metals, whereas fixation of the heavy metals maintain throughout the rest of the test period, with increasing pH up to around 6. Addition of some alkaline agent may inhibit the low pH during the application. The column test was also run as two set: one set incubated with deionized water for 72 hours prior to starting the test, and the other without incubation. The incubated set demonstrated better stabilizing efficiency, indicating the potential optimized operation method.

The Assessment of Water Quality Contamination Following the Utilization of Coal Ash as Fill Material (성토재로서 석탄회 사용에 따른 수질오염도 평가)

  • 김학삼;조삼덕
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.5-16
    • /
    • 1995
  • In this paper, two leaching tests(batch test & column test) were carried out to estimate the detrimental effects of coal ash leachates. The variation of constituents and concentration of coal ash leachate with the lapse of leachins time was analysed through the column tests. From the test results, it was found coal tach can be classified as a general waste, and all other items except pH of coal ash leachate are satisfied the concentration requirements for the drinking water. It was also found the concentration of coal ash rapidly decrease with the lapse of the leaching time and become the insignificant value after an elapsed time.

  • PDF

A Study on the Utilization of Organic Mixed Soil as Earthwork Materials (유기질 혼합토의 토공재로서의 활용에 관한 연구)

  • Park, Heung-Gyu;Koo, Je-Min
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.4
    • /
    • pp.29-35
    • /
    • 2002
  • In order to establish the applicability of organic soil as Earthwork Materials, this research conducts a battery of laboratory tests using two kinds of test materials. The test material A, a mixture of sand and organic soil, and the test material B, a mixture of granite soil and organic soil varying the proportion of organic soil through 5%, 10%, 20%, 30%, 40%, and 50% are used. Continuous column leaching tests of the test materials A and B indicate that their COD value is substantially smaller than that of pure organic soil, the COD value of the early leached water slightly exceeds the standard level for leached water. The COD value after 4 hours of leaching becomes very small. The mixed soil of sand and organic soil is considered usable as embankment materials when the proportion of organic soil is up to 40% with the corresponding concentration ratio of organic contents is less than 11.3%. Similarly, the mixed soil of granite soil and organic soil is considered usable as earthwork materials when the proportion of organic soil is less than 30% with the corresponding concentration ratio of organic contents is less than 16.4%.

  • PDF

Evaluation for Contents of Contaminants and Leaching Characteristics of Bottom Ash (바텀애쉬의 유해물질 함량 측정 및 용출특성 평가연구)

  • Koh, Taehoon;Lee, Sungjin;Shin, Minho;Kim, Byongsuk;Lee, Jeakeun;Lee, Taeyoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.77-83
    • /
    • 2010
  • In this study, we tried to determine any detrimental effects on water quality when bottom ash obtained from a coal-fired power plant intended to be used as a fill material in construction sites. Physical-chemical properties of bottom ash were determined using proximate analysis, elemental analysis, XRD, and XRF. Classification of bottom ash as a waste material and soil contamination due to the use of bottom ash were performed by Korea waste standard leaching test and soil toxicity test, respectively. Results of leaching tests were compared to the regulations for water quality and groundwater quality and no harmful effects on water quality were found. Most of heavy metals in leachate were below detection limits but trace amount of $Cr^{6+}$ was found. However, concentration of $Cr^{6+}$ was below the regulation criteria. Column leaching tests indicated that concentrations of Pb and Zn were slightly higher than regulations but below regulations within 1 PVE, but concentrations of sulfate were 10 times higher than regulation and thus, the required time to reach regulation was almost 8 PVE.

Comparative Investigation of the Contamination characteristics on As contaminated Sites (비소 오염지역의 오염특성 비교조사)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1647-1654
    • /
    • 2008
  • The characteristics of arsenic(As) contamination were investigated on soils of 3 abandoned metal mine sites in Gangwon-do, Korea. Total forty nine soils were sampled to conduct standard methods(extraction by 1HCl), sequential extraction and column leaching test. Concentration of As extracted by 1N HCl was ordered as follows: A mine > B mine > C mine, and the concentration of arsenic in the soils of A mine was significantly greater than that at any other cases and all samples of A mine were exceeded the national regulation of $6mg \;kg^{-1}$. In the results of sequential extraction, the potential contamination risk for groundwater and plants was ordered as follows: C mine > B mine > A mine because the C mine showed the relatively greater mobility and bioavailability of fraction than any other mines. And, in colume test, concentration of As was ordered as follows: C mine > B mine > A mine, and it was expected that these results were connected with fraction characteristics of the mine sites. Therefore adequate leaching investigations should be used to simulate the effect of natural leaching conditions, and to predict both the potential mobility of metals to groundwater and their bioavailability to plants under natural conditions.

  • PDF

Effects of Paper Mill Sludge in submerged Soil (제지(製紙)슬러지의 답토양(畓土壤) 시용효과(施用效果))

  • Choi, Jong Woo;Jo, Jeong Rye;Lee, Kyu Seung;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.19 no.2
    • /
    • pp.187-193
    • /
    • 1992
  • The effects of continuous restoration of sludge into the reclamating paddy soil and leaching test of sludge components by soil column were investigated. 1. The contents of nitrogen, phosphorus, potassium, C.E.C. and organic matter(O.M.) were increased in/on the paddy soil treated with paper mill sludge than non-treated. 2. Humic layer depth recognized by color showed the non-treated(10 cm), second year(15 cm) and third year(20 cm), respectively. 3. The effects of sludge treatment showed in the contents of O.M. such as non-treatment(0.9 %) < second year(1.39 %) < third year(1.75 %) in 10 cm depth. 4. All components in soil tested with column were increased by holding capacity of sludge, and the contamination effects of soil and ground water were not found by leaching test.

  • PDF