• Title/Summary/Keyword: Column capacitor

Search Result 11, Processing Time 0.022 seconds

Dynamic Range Extension of CMOS Image Sensor with Column Capacitor and Feedback Structure (컬럼 커패시터와 피드백 구조를 이용한 CMOS 이미지 센서의 동작 범위 확장)

  • Lee, Sanggwon;Jo, Sung-Hyun;Bae, Myunghan;Choi, Byoung-Soo;Kim, Heedong;Shin, Eunsu;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.131-136
    • /
    • 2015
  • This paper presents a wide dynamic range complementary metal oxide semiconductor (CMOS) image sensor with column capacitor and feedback structure. The designed circuit has been fabricated by using $0.18{\mu}m$ 1-poly 6-metal standard CMOS technology. This sensor has dual mode operation using combination of active pixel sensor (APS) and passive pixel sensor (PPS) structure. The proposed pixel operates in the APS mode for high-sensitivity in normal light intensity, while it operates in the PPS mode for low-sensitivity in high light intensity. The proposed PPS structure is consisted of a conventional PPS with column capacitor and feedback structure. The capacitance of column capacitor is changed by controlling the reference voltage using feedback structure. By using the proposed structure, it is possible to store more electric charge, which results in a wider dynamic range. The simulation and measurement results demonstrate wide dynamic range feature of the proposed PPS.

Dual-Sensitivity Mode CMOS Image Sensor for Wide Dynamic Range Using Column Capacitors

  • Lee, Sanggwon;Bae, Myunghan;Choi, Byoung-Soo;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.85-90
    • /
    • 2017
  • A wide dynamic range (WDR) CMOS image sensor (CIS) was developed with a specialized readout architecture for realizing high-sensitivity (HS) and low-sensitivity (LS) reading modes. The proposed pixel is basically a three-transistor (3T) active pixel sensor (APS) structure with an additional transistor. In the developed WDR CIS, only one mode between the HS mode for relatively weak light intensity and the LS mode for the strong light intensity is activated by an external controlling signal, and then the selected signal is read through each column-parallel readout circuit. The LS mode is implemented with the column capacitors and a feedback structure for adjusting column capacitor size. In particular, the feedback circuit makes it possible to change the column node capacitance automatically by using the incident light intensity. As a result, the proposed CIS achieved a wide dynamic range of 94 dB by synthesizing output signals from both modes. The prototype CIS is implemented with $0.18-{\mu}m$ 1-poly 6-metal (1P6M) standard CMOS technology, and the number of effective pixels is 176 (H) ${\times}$ 144 (V).

Capacitor Ratio-Independent and OP-Amp Gain-Insensitive Algorithmic ADC for CMOS Image Sensor (커패시터의 비율과 무관하고 OP-Amp의 이득에 둔감한 CMOS Image Sensor용 Algorithmic ADC)

  • Hong, Jaemin;Mo, Hyunsun;Kim, Daejeong
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.942-949
    • /
    • 2020
  • In this paper, we propose an improved algorithmic ADC for CMOS Image Sensor that is suitable for a column-parallel readout circuit. The algorithm of the conventional algorithmic ADC is modified so that it can operate as a single amplifier while being independent of the capacitor ratio and insensitive to the gain of the op-amp, and it has a high conversion efficiency by using an adaptive biasing amplifier. The proposed ADC is designed with 0.18-um Magnachip CMOS process, Spectre simulation shows that the power consumption per conversion speed is reduced by 37% compared with the conventional algorithmic ADC.

Vision chip for edge detection with a function of pixel FPN reduction (픽셀의 고정 패턴 잡음을 감소시킨 윤곽 검출용 시각칩)

  • Suh, Sung-Ho;Kim, Jung-Hwan;Kong, Jae-Sung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.191-197
    • /
    • 2005
  • When fabricating a vision chip, we should consider the noise problem, such as the fixed pattern noise(FPN) due to the process variation. In this paper, we propose an edge-detection circuit based on biological retina using the offset-free column readout circuit to reduce the FPN occurring in the photo-detector. The offset-free column readout circuit consists of one source follower, one capacitor and five transmission gates. As a result, it is simpler and smaller than a general correlated double sampling(CDS) circuit. A vision chip for edge detection has been designed and fabricated using $0.35\;{\mu}m$ 2-poly 4-metal CMOS technology, and its output characteristics have been investigated.

A Single-Bit 2nd-Order Delta-Sigma Modulator with 10-㎛ Column-Pitch for a Low Noise CMOS Image Sensor (저잡음 CMOS 이미지 센서를 위한 10㎛ 컬럼 폭을 가지는 단일 비트 2차 델타 시그마 모듈레이터)

  • Kwon, Min-Woo;Cheon, Jimin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.8-16
    • /
    • 2020
  • In this paper, a single-bit 2nd-order delta-sigma modulator with the architecture of cascaded-of-integrator feedforward (CIFF) is proposed for column-parallel analog-to-digital converter (ADC) array used in a low noise CMOS image sensor. The proposed modulator implements two switched capacitor integrators and a single-bit comparator within only 10-㎛ column-pitch for column-parallel ADC array. Also, peripheral circuits for driving all column modulators include a non-overlapping clock generator and a bias circuit. The proposed delta-sigma modulator has been implemented in a 110-nm CMOS process. It achieves 88.1-dB signal-to-noise-and-distortion ratio (SNDR), 88.6-dB spurious-free dynamic range (SFDR), and 14.3-bit effective-number-of-bits (ENOB) with an oversampling ratio (OSR) of 418 for 12-kHz bandwidth. The area and power consumption of the delta-sigma modulator are 970×10 ㎛2 and 248 ㎼, respectively.

A Feasibility Study on Novel FRAM Design Technique using Grounded-Plate PMOS-Gate Cell (Grounded-Plate PMOS 게이트 강유전체 메모리 셀을 이용한 새로운 FRAM 설계기술에 관한 연구)

  • Chung, Yeonbae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.12
    • /
    • pp.1033-1044
    • /
    • 2002
  • In this Paper, a new FRAM design technique utilizing grounded-plate PMOS-gate (GPPG) ferroelectric cell is proposed. A GPPG cell consists of a PMOS access transistor and a ferroelectric data storage capacitor. Its plate is grounded. The proposed architecture employs three novel methods for cell operation: 1) $V_{DD}$ -precharged bitline, 2) negative-voltage wordline technique and 3) negative-pulse restore. Because this configuration doesn't need the plate control circuitry, it can greatly increase the memory cell efficiency. In addition, differently from other reported common-plate cells, this scheme can supply a sufficient voltage of $V_{DD}$ to the ferroelectric capacitor during detecting and storing the polarization on the cell. Thus, there is no restriction on low voltage operation. Furthermore, by employing a compact column-path circuitry which activates only needed 8-bit data, this architecture can minimize the current consumption of the memory array. A 4- Mb FRAM circuit has been designed with 0.3-um, triple-well/1-polycide/2-metal technology, and the possibility of the realization of GPPG cell architecture has been confirmed.

High Frame Rate CMOS Image Sensor with Column-wise Cyclic ADC (컬럼 레벨 싸이클릭 아날로그-디지털 변환기를 사용한 고속 프레임 레이트 씨모스 이미지 센서)

  • Lim, Seung-Hyun;Cheon, Ji-Min;Lee, Dong-Myung;Chae, Young-Cheol;Chang, Eun-Soo;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.1
    • /
    • pp.52-59
    • /
    • 2010
  • This paper proposes a high-resolution and high-frame rate CMOS image sensor with column-wise cyclic ADC. The proposed ADC uses the sharing techniques of OTAs and capacitors for low-power consumption and small silicon area. The proposed ADC was verified implementing the prototype chip as QVGA image sensor. The measured maximum frame rate is 120 fps, and the power consumption is 130 mW. The power supply is 3.3 V, and the die size is $4.8\;mm\;{\times}\;3.5\;mm$. The prototype chip was fabricated in a 2-poly 3-metal $0.35-{\mu}m$ CMOS process.

Self-Supported NiSe/Ni Foam: An Efficient 3D Electrode for High-Performance Supercapacitors

  • Zhang, Jingtong;Zhao, Fuzhen;Du, Kun;Zhou, Yan
    • Nano
    • /
    • v.13 no.11
    • /
    • pp.1850136.1-1850136.12
    • /
    • 2018
  • Three-dimensional (3D) mixed phases NiSe nanoparticles growing on the nickel foam were synthesized via a simple one-step hydrothermal method. A series of experiments were carried out to control the morphology by adjusting the amount of selenium in the synthetic reaction. Meanwhile, the as-prepared novel column-acicular structure NiSe exist three advantages including ideal electrical conductivity, high specific capacity and high cycling stability. It delivered a high capacitance of $10.8F\;cm^{-2}$ at a current density- of $5mA\;cm^{-2}$. An electrochemical capacitor device operating at 1.6 V was then constructed using NiSe/NF and activated carbon (AC) as positive and negative electrodes. Moreover, the device showed high energy density of $31W\;h\;kg^{-1}$ at a power density of $0.81kW\;kg^{-1}$, as well as good cycling stability (77% retention after 1500 cycles).

Analysis of Tertiary Amines and Quaternary Ammonium Salts in Electrolyte Solutions of Electrolytic Capacitors by Ion-Pair Liquid Chromatography (전해커패시터 전해액 중 3차 아민과 4차 암모늄염의 이온쌍 액체크로마토그래피에 의한 분석)

  • Chung, Yongsoon;Chang, Cheolkyu;Lee, Jeongmi;Lee, Younghoon;Kim, Seong Ho
    • Analytical Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.231-239
    • /
    • 1997
  • We developed a procedure that can effectively separate and determine tertiary amines and quaternary ammonium salts in some samples with reverse phase ion-pair high performance chromatography, employing indirect spectrophotometric detection method. Detection and ion-pairing reagents used in this study were benzyl trimethylammonium chloride (BTMACl) and sodium dodecyl sulfate(DDSANa), respectively. Eluting the electrolyte solutions of some commercial electrolytic capacitors with a MeOH(40):water(60) eluent (pH 8.5 adjusted with NH4Cl-NH3 buffer) containing 0.010M DDSANa and 0.004 M BTMACl through Supelco LC-18 or ${\mu}$-Bondapak phenyl column, amines and ammonium salts contained in the sample were successfully separated and determined. Varying the composition, especially the content of quaternary ammonium salts, of electrolyte solutions based on this analysis. we could prepare the low impedance(0.08~0.13) electrolytic capacitors with excellent electrical properties and it was a confirmation that the analysis is favorable.

  • PDF

An Area-Efficient Time-Shared 10b DAC for AMOLED Column Driver IC Applications (AMOLED 컬럼 구동회로 응용을 위한 시분할 기법 기반의 면적 효율적인 10b DAC)

  • Kim, Won-Kang;An, Tai-Ji;Lee, Seung-Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.5
    • /
    • pp.87-97
    • /
    • 2016
  • This work proposes a time-shared 10b DAC based on a two-step resistor string to minimize the effective area of a DAC channel for driving each AMOLED display column. The proposed DAC shows a lower effective DAC area per unit column driver and a faster conversion speed than the conventional DACs by employing a time-shared DEMUX and a ROM-based two-step decoder of 6b and 4b in the first and second resistor string. In the second-stage 4b floating resistor string, a simple current source rather than a unity-gain buffer decreases the loading effect and chip area of a DAC channel and eliminates offset mismatch between channels caused by buffer amplifiers. The proposed 1-to-24 DEMUX enables a single DAC channel to drive 24 columns sequentially with a single-phase clock and a 5b binary counter. A 0.9pF sampling capacitor and a small-sized source follower in the input stage of each column-driving buffer amplifier decrease the effect due to channel charge injection and improve the output settling accuracy of the buffer amplifier while using the top-plate sampling scheme in the proposed DAC. The proposed DAC in a $0.18{\mu}m$ CMOS shows a signal settling time of 62.5ns during code transitions from '$000_{16}$' to '$3FF_{16}$'. The prototype DAC occupies a unit channel area of $0.058mm^2$ and an effective unit channel area of $0.002mm^2$ while consuming 6.08mW with analog and digital power supplies of 3.3V and 1.8V, respectively.