• Title/Summary/Keyword: Column Fracture

Search Result 170, Processing Time 0.025 seconds

Displacement Ductility of Circular RC Column According to the Spacing of Spirals (나선철근 간격에 따른 원형 RC 기둥의 변위연성도)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.71-82
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns (4.5 aspect ratio) were tested under cyclic lateral load with constant axial load. The selected test variables are longitudinal steel ratio (2.017%, 3.161%), transverse steel ratio, and axial load ratio (0, 0.07, 0.15). Volumetric ratio of spirals of all the columns is 0.335~0.894% in the plastic hinge region. It corresponds to 39.7~122.3% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The final objectives of this study are to provide quantitative reference data and tendency for performance or damage assessment based on the performance levels such as cracking, yielding, steel fracture, etc. In this paper, describes mainly failure behavior, strength degradation behaviour, displacement ductility of circular reinforced concrete bridge columns with respect to test variables.

Seismic Performance of Reinforced Concrete Flat Plate Frames according to Gravity Shear Ratio (중력전단비에 따른 철근콘크리트 플랫 플레이트 골조의 내진 성능 평가)

  • HwangBo, Jin;Han, Sang-Whan;Park, Young-Mi
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.1
    • /
    • pp.3-10
    • /
    • 2010
  • This study evaluates the seismic performance of reinforced concrete (RC) flat plate structures relation to the gravity shear ratio. For this purpose, 3 and 7 story framed buildings were designed for gravity loads only. Subsequently, a nonlinear static pushover analysis and a nonlinear time history analysis for the prototype buildings were carried out. In the nonlinear analysis, newly propose analytical slab-column joint model was utilized to capture punching shear failure and fracture mechanism in the analysis. The analytical results showed that seismic performance of RC flat plate frame is strongly influenced by the gravity shear ratio. In particularly, in the RC flat plate frame with a large gravity shear ratio the lateral strength and maximum drift capacity decreased significantly.

Kinetic Study Of $La_2$O_3-A1_2O_3-SiO_2$ glass infiltration into Spinel Preforms (스피넬 전성형체의 $La_2$O_3-A1_2O_3-SiO_2$계 유리 침투 kinetic)

  • 이득용;장주웅;김병수;김대준;송요승
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • Abstract Spinel powder having a particle size of 0.9$\mu$m was calcined for 30 min at $1300^{\circ}C$, followed by ball milling for 4h, to obtain the spinel particle size of 3.29$\mu$m. The die-pressed spinel was presintered at $1100^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at $1080^{\circ}C$ for 0~2 h to investigate the penetration kinetics in glass-spinel composite. The infiltration distance is parabolic in time due to capillarity. The strength and the fracture toughness of glassspinel composites were 317 MPa and 3.56 MPa $m^{1/2}$ respectively and dual microstructure of column (needle) and polygonal shapes as a result of recrystallization was observed due to the high calcination temperature.

Predictive Factors for a Kyphosis Recurrence Following Short-Segment Pedicle Screw Fixation Including Fractured Vertebral Body in Unstable Thoracolumbar Burst Fractures

  • Kim, Gun-Woo;Jang, Jae-Won;Hur, Hyuk;Lee, Jung-Kil;Kim, Jae-Hyoo;Kim, Soo-Han
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.3
    • /
    • pp.230-236
    • /
    • 2014
  • Objective : The technique of short segment pedicle screw fixation (SSPSF) has been widely used for stabilization in thoracolumbar burst fractures (TLBFs), but some studies reported high rate of kyphosis recurrence or hardware failure. This study was to evaluate the results of SSPSF including fractured level and to find the risk factors concerned with the kyphosis recurrence in TLBFs. Methods : This study included 42 patients, including 25 males and 17 females, who underwent SSPSF for stabilization of TLBFs between January 2003 and December 2010. For radiologic assessments, Cobb angle (CA), vertebral wedge angle (VWA), vertebral body compression ratio (VBCR), and difference between VWA and Cobb angle (DbVC) were measured. The relationships between kyphosis recurrence and radiologic parameters or demographic features were investigated. Frankel classification and low back outcome score (LBOS) were used for assessment of clinical outcomes. Results : The mean follow-up period was 38.6 months. CA, VWA, and VBCR were improved after SSPSF, and these parameters were well maintained at the final follow-up with minimal degree of correction loss. Kyphosis recurrence showed a significant increase in patients with Denis burst type A, load-sharing classification (LSC) score >6 or DbVC >6 (p<0.05). There were no patients who worsened to clinical outcome, and there was no significant correlation between kyphosis recurrence and clinical outcome in this series. Conclusion : SSPSF including the fractured vertebra is an effective surgical method for restoration and maintenance of vertebral column stability in TLBFs. However, kyphosis recurrence was significantly associated with Denis burst type A fracture, LSC score >6, or DbVC >6.

A Study of Radiographic Methods to X-ray Study of Patients with Spinal Scoliosis and Vertebrae Bone Fracture of Lumbar Spine (척주측만증과 허리뼈 골절 수술 환자의 엑스선 촬영법 연구)

  • Ahn, Byung-Ju;Lee, Jun-Haeng
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.425-431
    • /
    • 2019
  • The Study In order to obtain images of overlap of the two iron cores in the spinal cord simple x-ray scan after surgery of patients with ulcer lateral sclerosis and a fractured backbone, the researcher conducted a subjective evaluation on five radiographers of the university hospital's imaging department for more than 10 years. The results of the experiment showed that the lateral shot of lateral scoliosis of the spinal cord was taken with the middle face of the IR plane, and then the X-ray tube angle was taken vertically with the vertical spinal column fan-tom position, resulting in two overlapping images and high scores in the subjective evaluation. In addition, lateral shots of the lumbar dislocation fractured lumbar vertebrae were taken with the forehead aligned with the center of the IR plane and then with the X-ray angle perpendicular to the fourth waistline and the angle of the spinal cord perpendicular to the fourth waistline, the image of the two iron cores could be obtained from the radiographer.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

Numerical Analysis on Effect of Stemming Condition in Mine Ventilation Shaft Blasting (광산 통기수갱발파에서 전색조건이 발파효율에 미치는 영향에 관한 수치해석적 연구)

  • Kim, Jun-ha;Kim, Jung-gyu;Jung, Seung-won;Ko, Young-hun;Baluch, Khaqan;Kim, Jong-gwan
    • Explosives and Blasting
    • /
    • v.39 no.3
    • /
    • pp.15-23
    • /
    • 2021
  • Ventilation shafts are pathways in mines and tunnels for the removal of dust or smoke during underground space construction and operation. In mines, blasting with long blast holes is preferred for the excavation of a ventilation shaft in the 10~20m long crown pillar section. In this case, the bottom part of the blast hole is completely drilled in order to determine the drilling error, and this causes a problem of lowering the explosive charge and blasting efficiency. It is possible to solve the problem of explosive loading and to increase the blast efficiency by covering the curb of the blasthole by using stemming material. In this study, simulations for the blasting of a ventilation shaft were performed with various stemming lengths and the blasthole diameters(45, 76mm) using AUTODYN 2D SPH(Smooth particle hydrodynamics) analysis technique. Also the optimal bottom stemming column was derived by checking the size of the boulder and burden line according to blasting. Analysis result, blasting efficiency is lessened in case of stemming length less than 30cm and the optimal length of the stemming material should be 30cm or higher to achieve high efficiency of blasting.

Analysis of Plastic Hinge on Pile-Bent Structure with Varying Diameters (변단면 단일 현장타설말뚝의 소성힌지 영향분석)

  • Ahn, Sangyong;Jeong, Sangseom;Kim, Jaeyoung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.149-158
    • /
    • 2010
  • In this study, the behavior of Pile-Bent structure with varying diameters subjected to lateral loads were evaluated by a load transfer approach. An analytical method based on the beam-column model and nonlinear load transfer curve method was proposed to consider material non-linearity (elastic, yielding) and P-${\Delta}$ effect. For an effective analysis of behavior Pile-Bent structure, the bending moment and fracture lateral load of material were evaluated. And special attention was given to lateral behavior of Pile-Bent structures depending on reinforcing effect of materials and ground conditions. Based on the parametric study, it is shown that the maximum bending moment is located within a depth (plastic hinge) approximately 1~3D (D: pile diameter) below ground surface when material non-linearity and P-${\Delta}$ effect are considered. And distribution of the lateral deflections and bending moments on a pile are highly influenced by the effect of yielding. It is also found that this method considering material yielding behavior and P-${\Delta}$ effect can be effectively used to perform the preliminary design of Pile-bent structures.

Study of Mobility for Radionuclides in Nuclear Facility Sites (원자력 시설물 주변에서의 방사성 오염물 거동 특성 연구)

  • Chang, Seeun;Park, JongKul;Um, Wooyong
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.99-111
    • /
    • 2018
  • In this study three target radionuclides ($^{60}Co$, $^{137}Cs$, and $^{125}Sb$) were reacted with solid samples collected from the nuclear facility sites to investigate their sorption and mobility behaviors for preparing unexpected nuclear accidents. The highest sorption distribution coefficients ($K_{ds}$) of target radionuclides ($^{60}Co=947mL/g$, $^{137}Cs=2105mL/g$, $^{125}Sb=81.3mL/g$) were found in topsoil layer under groundwater condition, and the $K_d$ values of three radionuclides decreased in the order of fractured rock and bedrock samples under the same groundwater condition. High $K_d$ values of $^{60}Co$ in topsoil layer and fracture rock resulted from the clay minerals present, and the $K_d$ values decreased 58-69 % under seawater condition due to high ionic strength. $^{137}Cs$ sorption was controlled by the ion exchange reaction with $K^+$ on flayed edge sites (FES) of mica. The $^{137}Cs$ sorption was the most affected by seawater (89-97 % decrease), while $^{125}Sb$ sorption was not much affected by seawater. As the results of column and batch experiments, the retardation factors (R) of $^{137}Cs$, $^{60}Co$, and $^{125}Sb$ were determined about 5400-7400, 2000-2500, and 250-415, respectively, indicating no significant transport for these radionuclides even in fractured zone with groundwater. These results suggest that even in the case of severe nuclear accident at the nuclear facilities the mobility of released radionuclides ($^{60}Co$, $^{137}Cs$, and $^{125}Sb$) can be significantly retarded by the topsoil layer and fractured rock. In addition, the results of this study will be used for the safety and environmental performance assessment of nuclear facilities.

Eruptive Phases and Volcanic Processes of the Guamsan Caldera, Southeastern Cheongsong, Korea (구암산 칼데라의 분출상과 화산과정)

  • ;;;A.J. Reedman
    • The Journal of the Petrological Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.74-89
    • /
    • 2002
  • Rock units, relating with the Guamsan caldera, are composed of Guamsan Tuff and rhyolitic intrusions. The Guamsan Tuff consists almost entirely of ash-flow tuffs with some volcanic breccias and fallout tuffs. The volcanic breccia comprises block and ash-flow breccias of near-vent facies and caldera-collapse breccia near the ring fracture. The lower ash-flow tuffs are of an expanded pyroclastic flow phase from the pyroclastic flow-forming eruption with an ash-cloud fall phase of the fallout tuffs on the flow units, but the upper ones are of a non-expanded ash-flow phase from the boiling-over eruption. The rhyolitic intrusions are divided into intracaldera intrusions and ring dikes that are subdivided into inner, intermediate and outer dikes. We compile the volcanic processes along a single cycle of cadela development from the eruptive phases in the Guamsan area. The explosive eruptions began with block and ash-flow phases from collapse of glowing lava dome caused by Pelean eruption, progressed through expanded pyroclastic flow phases and ash-cloud fallout phases during high column collapse of pyroclastic flow-forming eruption from a single central vent. This was followed by non-expanded ash-flow phases due to boiling-over eruption from multiple ring fissure vents. The caldera collapse induced the translation into ring-fissure vents from a single central vent in the earlier eruption. After the boiling-over eruption, there followed an effusive phase in which rhyolitic magma was injected and erupted to be progressively emplaced as small plugs/dikes and ring dikes with many lava domes on the surface. Finally rhyodacitic magma was on emplaced as a series of dikes along the junction of both outer and intermediate dikes on the southwestern side of the caldela.