• Title/Summary/Keyword: Coloring mechanism

Search Result 21, Processing Time 0.029 seconds

Syntheses and Photofading of Intermolecular Charge-Transfer Complex Dyes of Phenothiazine and Quinonoid Compounds (Phenothiazine과 Quinone계 분자간 전하 이동형 색소의 합성 및 광 퇴색)

  • 김성훈;이순남;임용진
    • Textile Coloration and Finishing
    • /
    • v.4 no.2
    • /
    • pp.64-68
    • /
    • 1992
  • The charge-transfer(CT) complexes derived from phenothiazine as donor and quinonoid compounds as accepters were evaluated as coloring matter. Light fastness of the intermolecular charge-transfer(CT) complex dyes as well as absorption wavelength is an important factor when the complexes are applied to coloring matters. The photofading mechanism of CT complex dyes of phenothiazine and accepters were examined. The addition of effective radical scavenger, antioxidant and photostabilizer gave a remarkable enhancement of the photostability of CT dyes.

  • PDF

Optimal SMDP-Based Connection Admission Control Mechanism in Cognitive Radio Sensor Networks

  • Hosseini, Elahe;Berangi, Reza
    • ETRI Journal
    • /
    • v.39 no.3
    • /
    • pp.345-352
    • /
    • 2017
  • Traffic management is a highly beneficial mechanism for satisfying quality-of-service requirements and overcoming the resource scarcity problems in networks. This paper introduces an optimal connection admission control mechanism to decrease the packet loss ratio and end-to-end delay in cognitive radio sensor networks (CRSNs). This mechanism admits data flows based on the value of information sent by the sensor nodes, the network state, and the estimated required resources of the data flows. The number of required channels of each data flow is estimated using a proposed formula that is inspired by a graph coloring approach. The proposed admission control mechanism is formulated as a semi-Markov decision process and a linear programming problem is derived to obtain the optimal admission control policy for obtaining the maximum reward. Simulation results demonstrate that the proposed mechanism outperforms a recently proposed admission control mechanism in CRSNs.

Color Enhancement by Oxygen Torch in Blue Sapphires (블루사파이어와 루비의 고온산소 화염처리에 의한 색향상)

  • Song Oh Sung;Kim Sang Yeob
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.83-87
    • /
    • 2005
  • We enhanced the color of blue sapphires and rubies successfully by using a oxygen-propane torch flame annealing, which had not been employed so far. We confirmed that about 1 mm-thick de-coloring of the corundum samples were available with 60 minutes flame annealing through eye evaluation, color coordination characterization, and methylene iodide immersion observation. We also suggest that the color centers such as $[Fe_{Al}^{\cdot}]$ may transform into transparent $[Fe_{Al}^{x}],\;[Cr_{A1}^{x}]$ sites with $[V_o^']$ generation at the elevated temperature in oxygen-rich atmosphere by diffusion mechanism. Our results implied that the longer diffusion time and the higher oxygen partial pressure might lead to the better de-coloring enhancement in corundum gem stones.

The electrochromic properties of nickel oxide films (니켈산화물 박막의 전기적착색특성)

  • 이길동
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.127-135
    • /
    • 1999
  • Nickel oxide films were prepard by using the electron beam evaporation technique. Coloring and bleaching experiments for cyclic durability were repeated in KOH electrolyte by cyclic voltammetry. Visible spectrophtometry was used to assess the stability of the transmittance in the degraded films. X-ray photoelectron spectroscopy results showed that the grain surface are oxygen-rich compared to the grain interiors in a NiO film. Open circuit memory of colored films is about 400hours in lN KOH. The rate of self discharge was evaluated by measuring the transmittance at 550nm of a fully oxidized NiO film. The rate of self discharge was increased polynomially with time and the film is nearly bleached after about 400hours. It was also found that the degraded film by repeated cycles in the KOH solution changed the grain shape of film surface The film prepared under a vacuum pressure of $3\times10^{-4}$ mbar was found to be rather stable when subjected to the repeated coloring and bleaching cycles in KOH electrolyte. Band theory applied to explain the electrochromic mechanism was discussed.

  • PDF

The influence of preparation conditions on the electrochemical degradation of tungsten oxide thin films prepared by electron beam deposition (제작조건이 전자비임으로 제작된 텅스텐산화물 박막의 전기화학적 퇴화에 미치는 영향)

  • 이길동
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.306-313
    • /
    • 1998
  • The electrochromic $WO_3$thin films were prepared by using the electron-beam evaporatin technique. Flms prepared at a vacuum pressure of $10^{-4}$ mbar were found to be most stable during repeated potential cycles. The chemical stability of the film in aqueous solutions was also affected by the vacuum pressure during evaporation. The redox current and the optical properties of the degraded films were affected by the thickness of the film. The 5,000$\AA$-thick films were found to be most stable, undergoing the least degradation during the repeated coloring and bleaching cycles. The origin of the mechanism dominating the degradation during the repeated coloring and bleaching cycles was the accumulation of lithium in the film, which results in decreasing redox current. Tungsten oxide films with titanium content of about 10-15 mol% was found to be most stable, undergoing the least degradation during the repeated cycles. The origin of the mechanism dominating the least degradation during the repeated cycles was the reduction of lithium ion trapping sites in the films, which results in a increased durability.

  • PDF

Harmonizing the Method of Environmental Color Based on Nuance Concept of Natural Color System (자연색체계(NCS)의 뉘앙스개념에 기초한 환경색채조화방법)

  • Kim, Joo-Mi
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.1
    • /
    • pp.40-50
    • /
    • 2012
  • This study aims at suggesting the applicability of color combination based upon the characteristics of environmental color perception and the nuance concept of Natural Color System(NCS). The results are summarized below: First, NCS is a scientific coloring system in consideration of the relevance between people, light and environment, to be based on a phenomenological point of view. NCS can be called a psychometric model reflecting our natural color sense. Second, the color triangle established by NCS is one of the methods of expression based on the human visual mechanism, which is classified by two attributes of hue and nuance, not by the three color attributes of hue, lightness and saturation. The nuance concept of NCS implies the impression, atmosphere and tone that are perceived in colors, which are related to lightness and saturation. Accordingly, this paper suggests that the coloring arrangement emphasizing nuance and tone is more useful than hue in color planning. Third, aesthetic impression in environmental color perception is inclusive of instantly perceptive nuance, which is connected with affordance. The affordance is revealed by the different relation of similarity. In this regard, a strong relationship is noticed between color combination and the sense of pleasantness. The hypothesis regarding the complementation and similarity of contrasting nature is judged to provide observers with aesthetic order. Finally, this paper also suggests four harmonizing methods in the NCS color triangle based upon equal blackness, equal whiteness, equal chromaticness and same nuance. At the same time, opposition and a different concept of hue, lightness and lightness are combined complementarily with the nuance value to suggest patterns of color combination.

  • PDF

Mössbauer Spectroscopic Study on Colorative Mechanism of Celadon Glaze (청자 유약 발색메카니즘에 대한 뫼스바우어 분광법에 의한 연구)

  • Kim, Jong-Young;No, Hyung-Goo;Jeon, A-Young;Kim, Ung-Soo;Cho, Woo-Seok;Kim, Kyung-Ja;Kim, Chin-Mo;Kim, Chul-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.34-39
    • /
    • 2011
  • Systematic study on relationship between celadon coloring and glaze component was conducted by chromaticity analysis and M$\ddot{o}$ssbauer spectroscopic analysis. The chromaticity ($L^*$, $a^*$, $b^*$ values) and M$\ddot{o}$ssbauer analysis results were correlated to the amount of $Fe_2O_3$, $TiO_2$, MnO, and $P_2O_5$, which are the essential factors influencing celadon coloring. According to chromaticity analysis, celadon glaze color belongs to GY group when the addition of $TiO_2$ was 1.4%, whereas the color belongs to BG group when the addition of $TiO_2$ was 0.1%. For the GY group, the colors change from GY to YR with the decrease of brightness as the addition of $TiO_2$, MnO, and $P_2O_5$ increases. According to M$\ddot{o}$ssbauer analysis results, as the amount of divalent iron ion increases, the $a^*$ and $b^*$ values decrease, on the other hand, $L^*$ value increases. The ratio of divalent iron ion produced in reductive sintering process is found to be 80~95% in this study, which induces the increase of $L^*$ values in celadon glaze.

Investigation of Color Mecchanism in Co-Doped Augite Purple for Color Glaze (Co-Doped Augite 보라색 유약의 발색기구)

  • Kwon, Young-Joo;Lee, Byung-Ha
    • Korean Journal of Materials Research
    • /
    • v.23 no.5
    • /
    • pp.271-275
    • /
    • 2013
  • Cobalt (Co) compounds have been used for centuries to impart rich blue color to glass, glazes and ceramics. Cobalt monoxide (CoO), an oxide of Co, is an inorganic compound that has long been used as a coloring agent in the ceramic industry. Unlike other coloring agents, CoO can be used to develop colors other than blue, and several factors such as its concentration in the glaze and firing condition have been suggested as possible mechanisms. For example, CoO produces a typical blue color called "cobalt blue" at very low concentrations such as 1 wt% in both oxidation and reduction firing conditions; a higher concentration of CoO (5 wt%) develops a darker blue color under the same firing conditions. Interestingly, CoO also develops a purple color at high concentrations above 10 wt%. In this study, we examined the applicability and mechanism of a novel purple glaze containing cobalt(II, III) oxide, one of the well characterized cobalt oxides. Experimental results show that an Augite crystal isoform (Augite-Fe/Co) in which Fe was replaced with Co is the main component contributing to the formation of the purple color. Based on these results, we developed a glaze using chemically synthesized Augite-Fe/Co crystal as a color pigment. Purple color glaze was successfully developed by the addition of 6~15 wt% of $Co_3O_4$ to magnesia lime.

Synthesis of Sphene - pink Pigment by Rice Husk Ash (왕겨재를 사용한 Sphene - pink 안료의 합성)

  • Joo, In-Don;Lee, Hyun-Soo;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.3
    • /
    • pp.237-243
    • /
    • 2010
  • This research examines using Rice Husk Ash, $Cr_2O_3$ in producing the pink-red color. It studies the formation of cassiterite and malayaite crystallites, the primary factors in producing the pink-red color, in relation to the application of $Cr_2O_3$ to examine its coloring mechanism. In addition, the research intends to identify the optimum synthesizing temperature and maintaining time for crystallization of malayaite, a stable pink-red colorization factor in high temperature glaze during $Cr_2O_3$-$SnO_2$-CaO-$SiO_2$ family pigment synthesis. The optimum substituting contents is Rice Husk Ash : Quartz = 1 : 2, and the optimum temperature is suggested at $1300^{\circ}C$ for 2 h based on analysis results by XRD, FT-IR, Raman microscope, SEM and UV-vis.