• Title/Summary/Keyword: Colorimetric Detection

Search Result 95, Processing Time 0.022 seconds

Synthesis of Platinum-Reduced Graphene Oxide (Pt-rGO) Nanocomposite for Selective Detection of Hydrogen Peroxide as a Peroxidase-Mimic Catalyst

  • Doyun Park;Min Young Cho;Kuan Soo Shin
    • Journal of the Korean Chemical Society
    • /
    • v.67 no.6
    • /
    • pp.415-419
    • /
    • 2023
  • In this study, we report the one-pot synthesis of reduced graphene oxide (rGO) containing platinum nanoparticles with catalytic activity to break down hydrogen peroxide as a peroxidase-mimicking catalyst. A single reducing agent was used to reduce graphene oxide and a platinum precursor at a moderately low temperature of 70℃. The rGO was homogeneously decorated with platinum nanoparticles. The catalytic activity of Pt-rGO was investigated for the oxidation of 3,3',5,5'- tetramethylbenzidine (TMB), a peroxidase substrate, in the presence of hydrogen peroxide. The Pt-rGO coupled with glucose oxidase was also able to detect glucose at millimolar concentrations (up to 1 mM). Our results show that the Pt-rGO composite is a promising catalyst for the detection of hydrogen peroxide. This method was also applied for the detection of glucose.

Freshness Monitoring of Raw Salmon Filet Using a Colorimetric Sensor that is Sensitive to Volatile Nitrogen Compounds (휘발성 질소화합물 감응형 색변환 센서를 활용한 연어 신선도 모니터링)

  • Kim, Jae Man;Lee, Hyeonji;Hyun, Jung-Ho;Park, Joon-Shik;Kim, Yong Shin
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.93-99
    • /
    • 2020
  • A colorimetric paper sensor was used to detect volatile nitrogen-containing compounds emitted from spoiled salmon filets to determine their freshness. The sensing mechanism was based on acid-base reactions between acidic pH-indicating dyes and basic volatile ammonia and amines. A sensing layer was simply fabricated by drop-casting a dye solution of bromocresol green (BCG) on a polyvinylidene fluoride substrate, and its color-change response was enhanced by optimizing the amounts of additive chemicals, such as polyethylene glycol, p-toluene sulfonic acid, and graphene oxide in the dye solution. To avoid the adverse effects of water vapor, both faces of the sensing layer were enclosed by using a polyethylene terephthalate film and a gas-permeable microporous polytetrafluoroethylene sheet, respectively. When exposed to basic gas analytes, the paper-like sensor distinctly exhibited a color change from initially yellow, then to green, and finally to blue due to the deprotonation of BCG via the Brønsted acid-base reaction. The use of ammonia analyte as a test gas confirmed that the sensing performance of the optimized sensor was reversible and excellent (detection time of < 15 min, sensitive naked-eye detection at 0.25 ppm, good selectivity to common volatile organic gases, and good stability against thermal stress). Finally, the coloration intensity of the sensor was quantified as a function of the storage time of the salmon filet at 28℃ to evaluate its usefulness in monitoring of the food freshness with the measurement of the total viable count (TVC) of microorganisms in the food. The TVC value increased from 3.2 × 105 to 3.1 × 109 cfu/g in 28 h and then became stable, whereas the sensor response abruptly changed in the first 8 h and slightly increased thereafter. This result suggests that the colorimetric response could be used as an indicator for evaluating the degree of decay of salmon induced by microorganisms.

Deep Neural Network Technology for Analyzing PDA Colorimetric Transition Sensors in Pathogen Detection (병원균 검출용 PDA 색 전이 센서 분석을 위한 심층신경망 기술)

  • Junhyeon Jeon;Huisoo Jang;Mingyeong Shin;Tae-Joon Jeon;Sun Min Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • In this study, we propose a novel approach for rapid and accurate pathogen detection by integrating Polydiacetylene (PDA) hydrogel sensors with advanced deep learning algorithms and visualization techniques. PDA hydrogel sensors exhibit a color transition in the presence of pathogens, enabling straightforward and quick pathogen detection. We developed a reliable pathogen detection system that combines deep neural network algorithms with color quantification technology for image-based analysis. This image-based system retains the ease of pathogen detection offered by PDA sensors while deriving quantified color standards to overcome the limitations of human visual assessment, enhancing reliability. This advancement contributes to public health and the development and application of pathogen detection technology.

Understanding of a Korean Standard for the Analysis of Hexavalent Chromium in Soils and Interpretation of their Results (토양오염공정시험기준 6가크롬 분석의 이해와 결과 해석)

  • Kim, Rog-Young;Jung, Goo-Bok;Sung, Jwa-Kyung;Lee, Ju-Young;Jang, Byoung-Choon;Yun, Hong-Bae;Lee, Yee-Jin;Song, You-Seong;Kim, Won-Il;Lee, Jong-Sik;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.727-733
    • /
    • 2011
  • A new Korean standard for the determination of Cr(VI) in soils has been officially published as ES 07408.1 in 2009. This analytical method is based on the hot alkaline digestion and colorimetric detection prescribed by U.S. EPA method 3060A and 7196A. The hot alkaline digestion accomplished using 0.28 M $Na_2CO_3$ and 0.5 M NaOH solution (pH 13.4) at $90{\sim}95^{\circ}C$ determines total Cr(VI) in soils extracting all forms of Cr(VI), including water-soluble, adsorbed, precipitated, and mineral-bound chromates. This aggressive alkaline digestion, however, proved to be problematic for certain soils which contain large amounts of soluble humic substances or active manganese oxides. Cr(III) could be oxidized to Cr(VI) by manganese oxides during the strong alkaline extraction, resulting in overestimation (positive error) of Cr(VI). In contrast, Cr(VI) reduction by dissolved humic matter or Fe(II) could occur during the neutralization and acidic colorimetric detection procedure, resulting in underestimation (negative error) of Cr(VI). Futhermore, dissolved humic matter hampered the colorimetric detection of Cr(VI) using UV/Vis spectrophotometer due to the strong coloration of the filtrate, resulting in overestimation (positive error) of Cr(VI). Without understanding the mechanisms of Cr(VI) and Cr(III) transformation during the analysis it could be difficult to operate the experiment in laboratory and to evaluate the Cr(VI) results. For this reason, in this paper we described the theoretical principles and limitations of Cr(VI) analysis and provided useful guidelines for laboratory work and Cr(VI) data analysis.

"Turn-on" type colorimetric/fluorimetric probe for selective detection of Cu2+ at neutral pH condition

  • Lee, Hyun Jung;Saleem, Muhammad;Lee, Ki Hwan
    • Rapid Communication in Photoscience
    • /
    • v.4 no.4
    • /
    • pp.88-90
    • /
    • 2015
  • The design and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of rhodamine B based fluorogenic and chromogenic receptor for selective copper detection in the complete organic or mixed aqueous-organic media at neutral pH under ambient condition. The ligand exhibited the remarkable increment in the fluorescence emission and UV-visible absorption signal intensities at 587 and 547 nm, respectively, on induction of copper ion while the ligand solution remain completely silent on addition of varieties of other metal ions.

Polyester (PET) Fabric dyed with Lead (II) acetate-based Colorimetric Sensor for Detecting Hydrogen Sulfide (H2S) (황화수소(H2S) 감지를 위한 아세트산 납이 침염된 폴리에스터(PET) 섬유 기반의 변색성 센서)

  • Lee, Junyeop;Do, Nam Gon;Jeong, Dong Hyuk;Jung, Dong Geon;An, Hee Kyung;Kong, Seong Ho;Jung, Daewoong
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.5
    • /
    • pp.360-364
    • /
    • 2020
  • In this study, the colorimetric sensor, polyester (PET) fabric dyed with lead (II) acetate (Pb(C2H3O2)2), was fabricated and characterized for the detection of the hydrogen sulfide (H2S). The surface morphology of the fabric was determined using scanning electron microscope and energy-dispersive X-ray spectroscopy. The optical properties of the fabric were evaluated by measuring the variation in the blue value of an RGB sensor. The fabric showed a significant color change, high linearity (R2 : 0.98256), and fast response time (< 1.0 s) when exposed to H2S. This is because the sensor is highly porous and permeable to the gas. The fabric can not only be used as a hydrogen sulfide sensor but also be used to detect and prevent H2S influx using sticky tape on pipelines.

Detection of Heavy Metal Ions in Aqueous Solution Using Direct Dye Chemosensors

  • Heo, Eun-Yeong;Ko, Young-Il;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.21 no.5
    • /
    • pp.51-57
    • /
    • 2009
  • Since heavy metal pollution is a significant global environmental problem and very dangerous to human health, the improved methods for detecting heavy metals are required recently. Colorimetric chemosensors are now considered as one of the most effective analytical method used in the environment monitoring. New direct dyes having the function of colorimetric chemosensors were synthesized. When metal ions such as $Al^{3+}$, $Ca^{2+}$, $Cd^{2+}$, $Cr^{3+}$, $Cu^{2+}$, $Fe^{2+}$, $Fe^{3+}$, $Hg^{2+}$, $Li^+$, $Mg^{2+}$, $Na^+$, $Ni^{2+}$, $Pb^{2+}$ and $Zn^{2+}$ were added each solution of new direct dyes, the color of solution was changed and can be easily detected with naked eyes without expensive experimental equipment such as atomic absorption spectrometer (AAS) or inductively coupled plasma?mass spectrometer (ICP-MS). The new benzidine analogues were diazotized and reacted with couplers such as H-acid, J-acid, Chromotropic acid, Nevill-winther acid and gamma acid to synthesize new direct dyes. The structures of the new direct dyes were confirmed by high resolution mass spectrometer (FAB ionization) and evaluated with UV-Vis spectroscopy. The UV-VIS spectroscopy was measured for the dye solutions by adding various concentrations of metal ions. It was observed that the absorbance in UV-Vis spectra was changed as the heavy metal ions were added.

Copy Paper as a Platform for Low-cost Sensitive Glucose Sensing

  • Ye Lin Kim;Young-Mog Kim;Junghwan Oh;Joong Ho Shin
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.16-21
    • /
    • 2023
  • This study reports the potential of using commercial copy papers as substrates for simple sensitive glucose detection. Typical paper-based devices use filter papers as porous substrates that can contain reagents; however, this is the first study to report the use of copy papers for the purpose of enhancing enzymatic colorimetric detection. Glucose detection using glucose oxidase, horseradish peroxidase and potassium iodide was performed on a copy paper, cellulose-based filter paper, and polyethylene film. The results indicated that the copy paper exhibited a stronger coloration than the other substrates. Reagents required for detection were dried on the copy paper, and a 3D-printed holder was designed to provide an environment for consistent imaging, making it a convenient cost-effective option for point-of-care testing using a mobile phone camera. The simple paper-based glucose sensor exhibited a linear range of 0.1-20 mM, limit of quantification of 0.477 mM, and limit of detection of 0.143 mM.

Syntheses and Ion Selectivities of Dimeric Rhodamine 6G Chemosensors

  • Chang, Seung Hyun;Choi, Jin-Wook;Chung, Kwang-Bo
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1273-1278
    • /
    • 2013
  • Novel rhodamine 6G fluorescent chemosensors 1 and 2 for the detection of transition metal cations were synthesized through the condensation of rhodamine 6G ethylenediamine with each of 2-hydroxy-1-naphthaldehyde and 2,6-pyridinedicarbaldehyde, respectively. 1 and 2 were characterized using $^{13}C$ NMR, $^1H$ NMR and mass spectroscopy. Fluorometric and colorimetric measurements involving various metal ions revealed the ring opening of the rhodamine 6G spirocycle framework. In the absence of metal cations, 2 was colorless and non-fluorescent, whereas the addition of metal cations ($Hg^{2+}$ and others) changed the color to pink, accompanied by the appearance of an orange fluorescence. The chemosensors exhibited high selectivity for $Hg^{2+}$ over other divalent first-row transition metals. The complexes of $Hg^{2+}$ with 1 and 2 were successfully isolated. A huge enhancement in the fluorescence for both one- and two-photon excitations makes these compounds suitable candidates to be used for fluorescent labeling of biological systems.