• Title/Summary/Keyword: Colorectal Cancer Cells

Search Result 344, Processing Time 0.035 seconds

Identification of CEA-interacting proteins in colon cancer cells and their changes in expression after irradiation

  • Yoo, Byong Chul;Yeo, Seung-Gu
    • Radiation Oncology Journal
    • /
    • v.35 no.3
    • /
    • pp.281-288
    • /
    • 2017
  • Purpose: The serum carcinoembryonic antigen (CEA) level has been recognized as a prognostic factor in colorectal cancer, and associated with response of rectal cancer to radiotherapy. This study aimed to identify CEA-interacting proteins in colon cancer cells and observe post-irradiation changes in their expression. Materials and Methods: CEA expression in colon cancer cells was examined by Western blot analysis. Using an anti-CEA antibody or IgG as a negative control, immunoprecipitation was performed in colon cancer cell lysates. CEA and IgG immunoprecipitates were used for liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Proteins identified in the CEA immunoprecipitates but not in the IgG immunoprecipitates were selected as CEA-interacting proteins. After radiation treatment, changes in expression of CEA-interacting proteins were monitored by Western blot analysis. Results: CEA expression was higher in SNU-81 cells compared with LoVo cells. The membrane localization of CEA limited the immunoprecipitation results and thus the number of CEA-interacting proteins identified. Only the Ras-related protein Rab-6B and lysozyme C were identified as CEA-interacting proteins in LoVo and SNU-81 cells, respectively. Lysozyme C was detected only in SNU-81, and CEA expression was differently regulated in two cell lines; it was down-regulated in LoVo but up-regulated in SNU-81 in radiation dosage-dependent manner. Conclusion: CEA-mediated radiation response appears to vary, depending on the characteristics of individual cancer cells. The lysozyme C and Rab subfamily proteins may play a role in the link between CEA and tumor response to radiation, although further studies are needed to clarify functional roles of the identified proteins.

Effectiveness of Aromatherapy with Light Thai Massage for Cellular Immunity Improvement in Colorectal Cancer Patients Receiving Chemotherapy

  • Khiewkhern, Santisith;Promthet, Supannee;Sukprasert, Aemkhea;Eunhpinitpong, Wichai;Bradshaw, Peter
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.6
    • /
    • pp.3903-3907
    • /
    • 2013
  • Background: Patients with colorectal cancer are usually treated with chemotherapy, which reduces the number of blood cells, especially white blood cells, and consequently increases the risk of infections. Some research studies have reported that aromatherapy massage affects the immune system and improves immune function by, for example, increasing the numbers of natural killer cells and peripheral blood lymphocytes. However, there has been no report of any study which provided good evidence as to whether aromatherapy with Thai massage could improve the immune system in patients with colorectal cancer. The objectives of this study were to determine whether the use of aromatherapy with light Thai massage in patients with colorectal cancer, who have received chemotherapy, can result in improvement of the cellular immunity and reduce the severity of the common symptoms of side effects. Materials and Methods: Sixty-six patients with colorectal cancer in Phichit Hospital, Thailand, were enrolled in a single-blind, randomised-controlled trial. The intervention consisted of three massage sessions with ginger and coconut oil over a 1-week period. The control group received standard supportive care only. Assessments were conducted at pre-assessment and at the end of one week of massage or standard care. Changes from pre-assessment to the end of treatment were measured in terms of white blood cells, neutrophils, lymphocytes, CD4 and CD8 cells and the CD4/CD8 ratio and also the severity of self-rated symptom scores. Results: The main finding was that after adjusting for pre-assessment values the mean lymphocyte count at the post-assessment was significantly higher (P=0.04) in the treatment group than in the controls. The size of this difference suggested that aromatherapy with Thai massage could boost lymphocyte numbers by 11%. The secondary outcomes were that at the post assessment the symptom severity scores for fatigue, presenting symptom, pain and stress were significantly lower in the massage group than in the standard care controls. Conclusions: Aromatherapy with light Thai massage can be beneficial for the immune systems of cancer patients who are undergoing chemotherapy by increasing the number of lymphocytes and can help to reduce the severity of common symptoms.

Gelam Honey and Ginger Potentiate the Anti Cancer Effect of 5-FU against HCT 116 Colorectal Cancer Cells

  • Hakim, Luqman;Alias, Ekram;Makpol, Suzana;Ngah, Wan Zurinah Wan;Morad, Nor Azian;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4651-4657
    • /
    • 2014
  • The development of chemopreventive approaches using a concoction of phytochemicals is potentially viable for combating many types of cancer including colon carcinogenesis. This study evaluated the anti-proliferative effects of ginger and Gelam honey and its efficacy in enhancing the anti-cancer effects of 5-FU (5-fluorouracil) against a colorectal cancer cell line, HCT 116. Cell viability was measured via MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium) assay showing ginger inhibiting the growth of HCT 116 cells more potently ($IC_{50}$ of 3mg/mL) in comparison to Gelam honey ($IC_{50}$ of 75mg/mL). Combined treatment of the two compounds (3mg/mL ginger+75mg/mL Gelam honey) synergistically lowered the $IC_{50}$ of Gelam honey to 22mg/mL. Combination with 35 mg/mL Gelam honey markedly enhanced 5-FU inhibiting effects on the growth of HCT 116 cells. Subsequent analysis on the induction of cellular apoptosis suggested that individual treatment of ginger and Gelam honey produced higher apoptosis than 5-FU alone. In addition, treatment with the combination of two natural compounds increased the apoptotic rate of HCT 116 cells dose-dependently while treatment of either ginger or Gelam honey combined with 5-FU only showed modest changes. Combination index analysis showed the combination effect of both natural compounds to be synergistic in their inhibitory action against HCT 116 colon cancer cells (CI 0.96 < 1). In conclusion, combined treatment of Gelam honey and ginger extract could potentially enhance the chemotherapeutic effect of 5-FU against colorectal cancer.

Effects of Sophorae Radix on Human Colorectal Adenocarcinoma Cells (고삼의 인체 대장암세포에 미치는 효과)

  • Kim, Min-Chul;Lee, Hee-Jung;Lim, Bo-Ra;Kim, Hyung-Woo;Kim, Byung-Joo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.2
    • /
    • pp.155-159
    • /
    • 2012
  • The purpose of this study was to investigate the anti-cancer effects of Sophorae Radix and the effects of 5-Fluorouracil (5-FU) in human colorectal adenocarcinoma cells (HT-29). We used human colorectal adenocarcinoma cell line, HT-29 cells. We examined cell death by MTT assay and caspase 3 assay with Sophorae Radix. To examine the inhibitory effects of Sophorae Radix, cell cycle (sub G1) analysis was done the HT-29 cells after three days with Sophorae Radix. The reversibility of Sophorae Radix was examined on one day to five days treatment with $150{\mu}g$ Sophorae Radix. Sophorae Radix inhibited the growth of HT-29 cells in a dose-dependent fashion. Also we showed that Sophorae Radix induced apoptosis in HT-29 cells by MTT assay, caspase 3 assay and sub-G1 analysis. Sophorae Radix combined with 5-FU markedly inhibited the growth of HT-29 cells compared to Sophorae Radix or 5-FU alone. After 3 days treatment of HT-29 cells with Sophorae Radix, the fraction of cells in sub-G1 phase was much higher than that of the control group. Our findings provide insight into unraveling the effects of Sophorae Radix in human colorectal adenocarcinoma cells and developing therapeutic agents against colorectal cancer.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Anti-Proliferative Effect of Naringenin through p38-Dependent Downregulation of Cyclin D1 in Human Colorectal Cancer Cells

  • Song, Hun Min;Park, Gwang Hun;Eo, Hyun Ji;Lee, Jin Wook;Kim, Mi Kyoung;Lee, Jeong Rak;Lee, Man Hyo;Koo, Jin Suk;Jeong, Jin Boo
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.339-344
    • /
    • 2015
  • Naringenin (NAR) as one of the flavonoids observed in grapefruit has been reported to exhibit an anti-cancer activity. However, more detailed mechanism by which NAR exerts anti-cancer properties still remains unanswered. Thus, in this study, we have shown that NAR down-regulates the level of cyclin D1 in human colorectal cancer cell lines, HCT116 and SW480. NAR inhibited the cell proliferation in HCT116 and SW480 cells and decreased the level of cyclin D1 protein. Inhibition of proteasomal degradation by MG132 blocked NAR-mediated cyclin D1 downregulation and the half-life of cyclin D1 was decreased in the cells treated with NAR. In addition, NAR increased the phosphorylation of cyclin D1 at threonine-286 and a point mutation of threonine-286 to alanine blocked cyclin D1 downregulation by NAR. p38 inactivation attenuated cyclin D1 downregulation by NAR. From these results, we suggest that NAR-mediated cyclin D1 downregulation may result from proteasomal degradation through p38 activation. The current study provides new mechanistic link between NAR, cyclin D1 downregulation and cell growth in human colorectal cancer cells.

Structural Maintenance of Chromosomes 4 is a Predictor of Survival and a Novel Therapeutic Target in Colorectal Cancer

  • Feng, Xiao-Dong;Song, Qi;Li, Chuan-Wei;Chen, Jian;Tang, Hua-Mei;Peng, Zhi-Hai;Wang, Xue-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9459-9465
    • /
    • 2014
  • Background: Structural maintenance of chromosomes 4 (SMC-4) is a chromosomal ATPase which plays an important role in regulate chromosome assembly and segregation. However, the role of SMC-4 in the incidence of malignancies, especially colorectal cancer is still poorly understood. Materials and Methods: We here used quantitative PCR and Western blot analysis to examine SMC-4 mRNA and protein levels in primary colorectal cancer and paired normal colonic mucosa. SMC-4 clinicopathological significance was assessed by immunohistochemical staining in a tissue microarray (TMA) in which 118 cases of primary colorectal cancer were paired with noncancerous tissue. The biological function of SMC-4 knockdown was measured by CCK8 and plate colony formation assays. Fluorescence detection has been used to detect cell cycling and apoptosis. Results: SMC-4 expression was significantly higher in colorectal cancer and associated with T stage, N stage, AJCC stage and differentiation. Knockdown of SMC-4 expression significantly suppressed the proliferation of cancer cells and degraded its malignant degree. Conclusions: Our clinical and experimental data suggest that SMC-4 may contribute to the progression of colorectal carcinogenesis. Our study provides a new therapeutic target for colorectal cancer treatment.

Antiproliferative properties of luteolin against chemically induced colon cancer in mice fed on a high-fat diet and colorectal cancer cells grown in adipocyte-derived medium

  • Park, Jeongeun;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.47-58
    • /
    • 2022
  • Purpose: Obesity and a high-fat diet (HFD) are risk factors for colorectal cancer. We have previously shown that luteolin (LUT) supplementation in HFD-fed mice markedly inhibits tumor development in chemically induced colon carcinogenesis. In this study, we evaluated the anticancer effect of LUT in the inhibition of cell proliferation in HFD-fed obese mice and HT-29 human colorectal adenocarcinoma cells grown in an adipocyte-derived medium. Methods: C57BL/6 mice were fed a normal diet (ND, 11.69% fat out of total calories consumed, n = 10), HFD (40% fat out of total calories consumed, n = 10), HFD with 0.0025% LUT (n = 10), and HFD with 0.005% LUT (n = 10) and were subjected to azoxymethane-dextran sulfate sodium chemical colon carcinogenesis. All mice were fed the experimental diet for 11 weeks. 3T3-L1 preadipocytes and HT-29 cells were treated with various doses of LUT in an adipocyte-conditioned medium (Ad-CM). Results: The weekly body weight changes in the LUT groups were similar to those in the HFD group; however, the survival rates of the LUT group were higher than those of the HFD group. Impaired crypt integrity of the colonic mucosa in the HFD group was observed to be restored in the LUT group. The colonic expression of proliferating cell nuclear antigen and insulin-like growth factor 1 (IGF-1) receptors were suppressed by the LUT supplementation in the HFD-fed mice. The LUT treatment (10, 20, and 40 µM) inhibited the proliferation and migration of HT-29 cells cultured in Ad-CM in a dose-dependent manner, as well as the differentiation of 3T3-L1 preadipocytes. Conclusion: These results suggest that the anticancer effect of LUT is probably due to the inhibition of IGF-1 signaling and adipogenesis-related cell proliferation in colon cancer cells.

Growth inhibition of human pancreatic cancer cells by CR2945-targeted liposome

  • Yoon, Na-Young;Kim, Jin-Seok
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.416.3-417
    • /
    • 2002
  • Among the promising cancer therapy is targeting of the drug to tumor cells via receptor specific ligands. CR2945, $\beta$-2-( [2-(8-azaspiro [4.5] dec-8-ylcarbony!)-4.6-dimethylphenyl]amino-2-oxoethyl] -(R)-1-naphthalenepropanoic acid. is known to have an inhibitory effect on a gastrin receptor of colorectal cancer cells. As the human pancreatic cancer cells (BxPC-3) express gastrin receptors. interruption of binding of gastrin with gastrin receptor of human pancreatic cancer cells by CR2945 inhibits the growth of human pancreatic cancer cells. (omitted)

  • PDF

The anticancer effect of Bioconverted Danggui Liuhuang Decoction EtOH extracts in human colorectal cancer cell lines

  • Park, Hyo-Hyun;Park, Ji-Eun;Son, Eun-Kyung;Kim, Bo-Mi;So, Jai-Hyun
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.103-110
    • /
    • 2020
  • Objective: The objective of our study was to investigate anti-cancer effects of Danggui Liuhuang Decoction extract bioconverted by protease liquid coenzyme of Aspergillus kawachii (DLD-BE), compared to a non-bioconverted DLD extract (DLD-E) and determine the underlying mechanisms. Methods: DLD-E and DLD-BE were evaluated for their ability to modulate these signaling pathways and suppress the proliferation of human colorectal cancer (CRC) cells, HCT-116, LoVo, and HT-29. The anti-cancer effects of DLD-E and DLD-BE were measured by using proliferation and migration assays, cell cycle analysis, Western blots, and real-time PCR. Results: In this study, treatment with DLD-E and DLD-BE at concentrations of 25-100 ㎍/mL inhibited proliferation and migration in human CRC cells. DLD-BE induced apoptotic cell death and decreased COX-2 expression in HT-29 cells. The mechanisms of action included modulation of the AKT and extracellular-signal-regulated kinase signaling cascades along with inhibition of COX-2 expression. The results demonstrate novel anti-cancer mechanisms of DLD-BE against the growth of human CRC cells. Thus, we propose that DLD-BE can be developed as a more potent supplement to inhibit colorectal tumor growth and intestinal inflammation than DLD-E.