• Title/Summary/Keyword: Colorectal Cancer Cells

Search Result 351, Processing Time 0.033 seconds

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

Fabrication and validation study of a 3D tumor cell culture system equipped with bloodvessle-mimik micro-channel (혈관모사 마이크로채널이 장착된 3D 종양 세포 배양 시스템의 제작 및 검증 연구)

  • Park, Jeong-Yeon;Koh, Byum-seok;Kim, Ki-Young;Lee, Dong-Mok;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.11-16
    • /
    • 2021
  • Recently, three-dimensional (3D) cell culture systems, which are superior to conventional two-dimensional (2D) vascular systems that mimic the in vivo environment, are being actively studied to reproduce drug responses and cell differentiation in organisms. Conventional two-dimensional cell culture methods (scaffold-based and non-scaffold-based) have a limited cell growth rate because the culture cannot supply the culture medium as consistently as microvessels. To solve this problem, we would like to propose a 3D culture system with an environment similar to living cells by continuously supplying the culture medium to the bottom of the 3D cell support. The 3D culture system is a structure in which microvascular structures are combined under a scaffold (agar, collagen, etc.) where cells can settle and grow. First, we have manufactured molds for the formation of four types of microvessel-mimicking chips: width / height ①100 ㎛ / 100 ㎛, ②100 ㎛ / 50 ㎛, ③ 150 ㎛ / 100 ㎛, and ④ 200 ㎛ / 100 ㎛. By injection molding, four types of microfluidic chips were made with GPPS (general purpose polystyrene), and a 100㎛-thick PDMS (polydimethylsiloxane) film was attached to the top of each microfluidic chip. As a result of observing the flow of the culture medium in the microchannel, it was confirmed that when the aspect ratio (height/width) of the microchannel is 1.5 or more, the fluid flows from the inlet to the outlet without a backflow phenomenon. In addition, the culture efficiency experiments of colorectal cancer cells (SW490) were performed in a 3D culture system in which PDMS films with different pore diameters (1/25/45 ㎛) were combined on a microfluidic chip. As a result, it was found that the cell growth rate increased up to 1.3 times and the cell death rate decreased by 71% as a result of the 3D culture system having a hole membrane with a diameter of 10 ㎛ or more compared to the conventional commercial. Based on the results of this study, it is possible to expand and build various 3D cell culture systems that can maximize cell culture efficiency by cell type by adjusting the shape of the microchannel, the size of the film hole, and the flow rate of the inlet.

Combined Treatment of Nonsteroidal Anti-inflammatory Drugs and Genistein Synergistically Induces Apoptosis via Induction of NAG-1 in Human Lung Adenocarcinoma A549 Cells (인간 A549 폐암세포에서 비스테로이드성 항염증제와 genistein의 복합처리에 의한 NAG-1 의존적 세포사멸 증진 효과)

  • Kim, Cho-Hee;Kim, Min-Young;Lee, Su-Yeon;Moon, Ji-Young;Han, Song-Iy;Park, Hye-Gyeong;Kang, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.8
    • /
    • pp.1073-1080
    • /
    • 2009
  • A number of studies have demonstrated that the regular use of nonsteroidal anti-inflammatory drugs (NSAIDs) can reduce the risks of colorectal, oesophageal and lung cancers. NSAIDs have been shown to exert their anti-cancer effects through inducing apoptosis in cancer cells. The susceptibility of tumor cells to anti-tumor drug-induced apoptosis appears to depend on the balance between pro-apoptotic and anti-apoptotic programs such as nuclear factor kB (NF-kB), phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) and MEK1/2-ERK1/2 pathways. We examined the effects of pro-survival PI3K and ERK1/2 signal pathways on cell cycle arrest and apoptosis in response to NSAIDs including sulindac sulfide and NS398. We show that simultaneous inhibition of the Akt/PKB and ERK1/2 signal cascades could synergistically enhance the potential pro-apoptotic activities of sulindac sulfide and NS398. Similar enhancement was observed in cells treated with sulindac sulfide or NS398 and 100 ${\mu}$M genistein, an inhibitor of receptor tyrosine kinases (RTKs) that are upstream of PI3K and MEK1/2 signaling. We further demonstrate that NAG-1 is induced and plays a critical role(s) in apoptosis by NSAIDs-based combined treatment. In sum, our results show that combinatorialtreatment of sulindac sulfide or NS398 and genistein results in a highlysynergistic induction of apoptotic cell death to increase the chemopreventive effects of the NSAIDs, sulindac sulfide and NS398.

Bilolgical Activities of Conjugated Linoleic Acid (CLA) and Animal Products (Conjugated Linoleic Acid (CLA)의 생리활성과 축산식품)

  • Hur, S.J.;Lee, J.I.;Ha, Y.L.;Park, G.B.;Joo, S.T.
    • Journal of Animal Science and Technology
    • /
    • v.44 no.4
    • /
    • pp.427-442
    • /
    • 2002
  • Conjugated linoleic acid(CLA) is a collective term for a group of positional (c8, c10; c9, c11; c10, c12, and c11, c13) and geometric(cis,cis; cis,trans; trans,cis; and trans,trans) isomers of octadecadienoic acid (linoleic acid) with conjugated double bond system. CLA has been shown to have a variety of biological effects. Major effects of CLA on health, such as anti-cancer, anti-oxidation, anti-atherosclerosis and improving immuno-responses, might be derived or partially derived from the alternated lipid metabolism after CLA feeding. Most of studies on the effect of CLA on fat metabolism are concentrated on rats, mice, pigs and other mammals. The CLA inhibited carcinogen-induced neoplasia in several animal models and inhibited the proliferation of human malignant melanoma, colorectal and breast cancer cells and CLA reduced the atherosclerosis. Several studies have determined the antioxidant property of CLA; however, the property still remains controversial. Some of the studies have shown that CLA acted as an antioxidant, whereas some other studies have demonstrated that CLA might be a prooxidant. Several studies suggested that CLA could reduce fat accumulation in mammals. CLA was suggested to promote muscle growth and reduce fat deposition in mouse, and improve feed efficiency in rats. CLA has been shown to inhibit the activity of stearoyl-CoA reductase. CLA also reduced the content of arachidonic acid. Since arachidonic acid, and eicosapentaenoic acid (EPA) and docosahexenoic acid (DHA) are synthesized by different pathways, reducing the synthesis of arachidonic acid may not mean reducing that of EPA and DHA. Many sutdies have been shown biological effects of CLA. Therefore, further research is needed to answer the following questions: 1) how to synthesize the new CLA by new methods, 2) why CLA has shown biological effects, 3) how to increase CLA effects in animal products.

A novel herbal formulation consisting of red ginseng extract and Epimedium koreanum Nakai-attenuated dextran sulfate sodium-induced colitis in mice

  • Saba, Evelyn;Lee, Yuan Yee;Kim, Minki;Hyun, Sun-Hee;Park, Chae-Kyu;Son, Eunjung;Kim, Dong-Seon;Kim, Sung-Dae;Rhee, Man Hee
    • Journal of Ginseng Research
    • /
    • v.44 no.6
    • /
    • pp.833-842
    • /
    • 2020
  • Background: Ulcerative colitis (UC) is a commonly encountered large intestine disease in the contemporary world that terminates into colorectal cancer; therefore, the timely treatment of UC is of major concern. Panax ginseng Meyer is an extensively consumed herbal commodity in South East Asian countries, especially Korea. It exhibits a wide range of biologically beneficial qualities for almost head-to-toe ailments in the body. Epimedium koreanum Nakai (EKN) is also a widely used traditional Korean herbal medicine used for treating infertility, rheumatism, and cardiovascular diseases. Materials and methods: Separately the anti-inflammatory activities of both red ginseng extracts (RGEs) and EKNs had been demonstrated in the past in various inflammatory models; however, we sought to unravel the anti-inflammatory activities of the combination of these two extracts in dextran sulfate sodium (DSS)-induced ulcerative colitis in mice model because the allopathic remedies for UC involve more side effects than benefits. Results: Our results have shown that the combination of RGE + EKN synergistically alleviated the macroscopic lesions in DSS-induced colitic mice such as colon shortening, hematochezia, and weight loss. Moreover, it restored the histopathological lesions in mice and decreased the levels of proinflammatory mediators and cytokines through the repression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP-3) expression. In vitro, this combination also reduced the magnitude of nitric acid (NO), proinflammatory mediators and cytokine through NF-κB and mitogen-activated protein kinase (MAPK) pathways in RAW 264.7 mouse macrophage cells. Conclusion: In the light of these findings, we can endorse this combination extract as a functional food for the prophylactic as well as therapeutic treatment of UC in humans together with allopathic remedies.

Anti-proliferative and Pro-apoptotic Activities by Pomace of Schisandra chinensis (Turcz.) Baill. and Schizandrin (오미자 박 추출물 및 schizandrin에 의한 암세포 항성장 및 세포사멸 활성)

  • Kim, Hyun-Ji;Seo, Yu-Mi;Lee, Eun-Ju;Chung, Chungwook;Sung, Hwa-Jung;Sohn, Ho-Yong;Park, Jong-Yi;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.28 no.4
    • /
    • pp.415-420
    • /
    • 2018
  • Schisandra chinensis (Turcz.) Baill. (omija) is often used in Chinese medicine to treat various human diseases, and is known to possess various bioactive components such as schizandrin and gomisin A. In the present study, we prepared ethanol extracts of pomace of Schisandra chinensis (PSC) and investigated their effects on cell viability and expression changes of pro-apoptotic genes such as ATF3, NAG-1 and p21 in human colorectal cancer HCT116 cells. PSC significantly reduced cell viability in a dose-dependent manner, and also dramatically induced the expression of ATF3, NAG-1 and p21 genes, with resveratrol used as a positive control. We also assessed the effects of pure compound schizandrin (SZ) derived from Schisandra chinensis on cell viability and expression of pro-apoptotic genes such as ATF3, NAG-1 and p21. The results showed that SZ also decreased cell viabilities in a dose-dependent manner and increased the expression of ATF3, NAG-1 and p21 genes. In addition, apoptosis was detected in SZ-treated HCT116 cells, which was confirmed with PARP cleavage. PARP cleavage was recovered in part by the transfection of NAG-1 siRNA. The results indicate that NAG-1 is one of the genes responsible for apoptosis induced by SZ. Overall, our findings may contribute to understanding the molecular mechanisms of anti-proliferative and pro-apoptotic activities mediated by PSC and SZ.

Effect of Reduction in the Adipose Accumulation of Akkermansia muciniphila in Mature 3T3-L1 Adipocytes (성숙한 3T3-L1 지방세포에서 Akkermansia muciniphila의 지방축적 감소 효과)

  • Shim, Hyeyoon;Lim, Sookyoung;Shin, Joo-Hyun;Lee, Dokyung;Seo, Jae-Gu;Kim, Hojun
    • Journal of Korean Medicine for Obesity Research
    • /
    • v.19 no.2
    • /
    • pp.106-112
    • /
    • 2019
  • Objectives: The aim of this study was to observe the reduction of lipid accumulation by treatment with Akkermansia muciniphila extract on 3T3-L1 adipocytes. Methods: After treating pasteurized Akk. muciniphila strains in HT-29 colorectal cancer cell, the relative expression of interleukin (IL)-8, tumor necrosis factor-α, IL-6, and IL-1β mRNA was analyzed by real time polymerase chain reaction, respectively. 27 strains of Akk. muciniphila which have anti-inflammatory effects were selected. 3T3-L1 pre-adipocytes were treated with Akk. muciniphila for 24 hr and then measured the toxicity using water soluble tetrazolium salt assay. The cells were incubated for 4 days and then differentiated into adipocytes using the medium including adipogenic reagents for 10 days. The Akk. muciniphila was treated when the medium was exchanged for differentiation medium at 4th day and insulin medium at 6th day. To observe the lipid accumulation, the cells were stained with Oil red O dye and were measured using a spectrophotometer. Results: In the cytotoxicity test, the cell viability of 3T3-L1 pre-adipocytes was significantly increased compared to the control group which untreated with Akk. muciniphila, and there was no cytotoxicity of Akk. muciniphila at 1×107 CFU/mL. The results on Oil red O staining and absorbance measurements were showed a significant decrease in lipid accumulation in the group which was treated with Akk. muciniphila compared to the control group. Conclusions: In our results, Akk. muciniphila has the inhibitory effect of lipid accumulation in 3T3-L1 adipocytes. This suggests that Akk. muciniphila could be help to improve obesity.

Methylenetetrahydrofolate Reductase C677T Polymorphism in Gastric Cancer (위암에서 Methylenetetrahydrofolate Reductase C677T의 유전자 다형성)

  • Seo Won;Park Won Cheol;Lee Jeong Kyun;Kim Jeong Jung
    • Journal of Gastric Cancer
    • /
    • v.5 no.1
    • /
    • pp.10-15
    • /
    • 2005
  • Purpose: Recently the role of vitamins, folate in particular, has been emphasized in the maintenance of health. Folate deficiency is known to give rise to developmental delay, immature vascular disease, neural tube defect, acute leukemia, atherosclerotic vascular disease, delivery defects, breast cancer, and particularly gastrointestinal neoplasia. Methylenetetrahydrofolate reductase (MTHFR) is an essential enzyme in folate metaboism, and influences DNA synthesis and DNA methylation. Generally, folate deficiency is associated with gastrointestinal neoplasms. The amino-acid- changing and enzyme-activity-reducing nucleotide polymorphism (766C$\rightarrow$T/ Ala222Val) has been described in the MTHFR polymorphism and leads to low enzyme activity that may reduce the capacity of DNA methylation and possibly uracil mis-incorporation into DNA. These processes may be critical in the oncogenic transformation of human cells, especially in colorectal carcinomas. We investigated the relationship between the MTHFR polymorphism in gastric cancer and the tumor site, the smoking history, and the alcoholic history. Materials and Methods: Ninety-six (96) individuals with gastric cancer and 287 healthy persons were analyzed. Blood sampling was performed, PCR-RFLP was analyzed, and MTHFR polymorphism genotypes of C/C, C/T, and T/T were obtained and analyzed statistically for their correlation. Results: In the gastric cancer group there were 69 ($72\%$) males and 27 ($28\%$) females. There were also 58 cases ($60\%$) involving the gastric lower body, 20 cases ($21\%$) the gastric mid-body, and 18 cases ($19\%$) the gastric upper body. In the control group there were 169 ($59\%$) males and 118 ($41\%$) females. Among the gastric cancer, 56 ($61\%$) smoking patients, 40 ($39\%$) non-smoking patients, 45($47\%$) alcoholic patients, 51 ($53\%$) non-alcoholic patients. In the gastric cancer group, MTHER polymorphisms were C/C in 18 ($19\%$) cases, C/T in 59 ($61\%$) cases, T/T in 19 ($20\%$) cases. In the control group polymorphisms were C/C 116 ($40\%$) cases, C/T 103 ($36\%$) cases, and T/T 68 ($24\%$) cases (P=0.045). In cases of lower gastric body cancer, polymorphisms were C/C in 16 ($24\%$) C/C in 16 ($24\%$) cases and C/T or T/T in 42 ($72\%$) cases. In cases of upper and mid-body cancer, polymorphisms were C/C in 2 ($5\%$) cases and C/T or T/T 36 ($95\%$) cases (P=0.006). In the non-smoking patient group, polymorphisms were C/C in 5 (12%) cases and C/T or T/T in 35 ($88\%$) cases. In the smoking patient group, C/C in 13 ($23\%$) cases and C/T or T/T in 43 ($77\%$) cases (P=0.189). In the non-alcoholic patient group, polymorphisms were C/C in 6 ($12\%$) cases and C/T or T/T in 45 ($88\%$) cases. In the alcoholic patient group, polymorphisms were C/C in 12 ($26\%$) cases and C/T or T/T in 33 ($74\%$) cases (P=0.063) Conclusion: MTHFR polymorphisms are associated with gastric cancer and tumor site, but not with smoking and alcohol drinking.

  • PDF

Anti-inflammatory effects of mulberry twig extracts on dextran sulfate sodium-induced colitis mouse model (상지추출물이 Dextran Sulfate Sodium으로 유도된 대장염 마우스 모델에 미치는 항염증 효능)

  • Cui, Xuelei;Kim, Eunjung
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.139-148
    • /
    • 2019
  • Purpose: Ulcerative colitis is a common inflammatory bowel disease. Prolonged colitis can be a risk factor for the development of colorectal cancer. Mulberry twig (MT, Sangzhi), a dry branch of Morus alba L., which is widely distributed throughout East Asia, has been shown to have anti-inflammatory activities in the cells. However, the effects of MT extracts on colitis in in vivo are limited. Therefore, in this study, we investigated the anti-inflammatory effects of MT extracts in the dextran sulfate sodium (DSS)-induced mouse colitis model. Methods: Six week-old, male ICR mice were divided into 3 groups: Control (n = 5), DSS (n = 7), and DSS+MT (n = 7) groups. Mice in the DSS and DSS+MT groups were administrated 3% DSS in drinking water for 5 days to induce colitis. At the same time, water extracts of MT (5 g/kg body weight/day) were orally administered to mice in the DSS+MT groups for 5 days. Results: The MT extracts significantly reduced the clinical and pathological characteristics of colitis. Disease activity index, mucosal thickness, and colonocyte proliferation were significantly reduced in the DSS+MT group compared with the DSS group. Furthermore, MT administration reduced the levels of plasma $TNF-{\alpha}$, IL-6, and the colonic myeloperoxidase activity as well as mRNA expression of $TNF-{\alpha}$, IL-6, Cox-2, and iNOS. Conclusion: Taken together, these results suggest that MT water extracts have potent anti-colitis activities in the mouse colitis model.

Multiple Monoclonal Antibodies Produced in a Single Transgenic Plant (형질전환 식물체에서의 복합 단일 항체 단백질 생산)

  • Ahn, Mi-Hyun;Oh, Eun-Yi;Song, Mi-Ra;Lu, Zhe;Kim, Hyun-Soon;Joung, Hyouk;Ko, Ki-Sung
    • Journal of Life Science
    • /
    • v.19 no.1
    • /
    • pp.123-128
    • /
    • 2009
  • Production of highly valuable immunotherapeutic proteins such as monoclonal antibodies and vaccines using plant biotechnology and genetic engineering has been studied as a popular research field. Plant expression system for mass production of such useful recombinant therapeutic proteins has several advantages over other existing expression systems with economical and safety issues. Immunotherapy of multiple monoclonal antibodies, which can recognize multiple targeting including specific proteins and their glycans highly expressed on the surface of cancer cells, can be an efficient treatment compared to a single targeting immunotherapy using a single antibody. In this study, we have established plant production system to express two different targeting monoclonal antibodies in a single transgenic plant through crossing fertilization between two different transgenic plants expressing anti-colorectal cancer mAbCO17-1A and anti-breast cancer mAbBR55, respectively. The F1 seedlings were obtained cross fertilization between the two transgenic parental plants. The presence, transcription, and protein expression of heavy chain (HC) and light chain (LC) genes of both mAbs in the seedlings were investigated by PCR, RT-PCR, and immunoblot analyses, respectively. Among all the seedlings, some seedlings did not carry or transcribe the HC and LC genes of both mAbs. Thus, the seedlings with presence and transcription of HC and LC genes of both mAbs were selected, and the selected seedlings were confirmed to have relatively stronger density of HC and LC protein bands compared to the transgenic plant expressing only each mAb. These results indicate that the F1 seedling plant with carrying both mAb genes was established. Taken together, plant crossing fertilization can be applied to generate an efficient production system expressing multiple monoclonal antibodies for immunotherapy in a single plant.