• Title/Summary/Keyword: Colorectal Cancer Cells

Search Result 351, Processing Time 0.026 seconds

20 (S)-ginsenoside Rh2 inhibits colorectal cancer cell growth by suppressing the Axl signaling pathway in vitro and in vivo

  • Zhang, Haibo;Yi, Jun-Koo;Huang, Hai;Park, Sijun;Kwon, Wookbong;Kim, Eungyung;Jang, Soyoung;Kim, Si-Yong;Choi, Seong-kyoon;Yoon, Duhak;Kim, Sung-Hyun;Liu, Kangdong;Dong, Zigang;Ryoo, Zae Young;Kim, Myoung Ok
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.396-407
    • /
    • 2022
  • Background: Colorectal cancer (CRC) has a high morbidity and mortality worldwide. 20 (S)-ginsenoside Rh2 (G-Rh2) is a natural compound extracted from ginseng, which exhibits anticancer effects in many cancer types. In this study, we demonstrated the effect and underlying molecular mechanism of G-Rh2 in CRC cells in vitro and in vivo. Methods: Cell proliferation, migration, invasion, apoptosis, cell cycle, and western blot assays were performed to evaluate the effect of G-Rh2 on CRC cells. In vitro pull-down assay was used to verify the interaction between G-Rh2 and Axl. Transfection and infection experiments were used to explore the function of Axl in CRC cells. CRC xenograft models were used to further investigate the effect of Axl knockdown and G-Rh2 on tumor growth in vivo. Results: G-Rh2 significantly inhibited proliferation, migration, and invasion, and induced apoptosis and G0/G1 phase cell cycle arrest in CRC cell lines. G-Rh2 directly binds to Axl and inhibits the Axl signaling pathway in CRC cells. Knockdown of Axl suppressed the growth, migration and invasion ability of CRC cells in vitro and xenograft tumor growth in vivo, whereas overexpression of Axl promoted the growth, migration, and invasion ability of CRC cells. Moreover, G-Rh2 significantly suppressed CRC xenograft tumor growth by inhibiting Axl signaling with no obvious toxicity to nude mice. Conclusion: Our results indicate that G-Rh2 exerts anticancer activity in vitro and in vivo by suppressing the Axl signaling pathway. G-Rh2 is a promising candidate for CRC prevention and treatment.

The Cytotoxicity of Kahweol in HT-29 Human Colorectal Cancer Cells Is Mediated by Apoptosis and Suppression of Heat Shock Protein 70 Expression

  • Choi, Dong Wook;Lim, Man Sup;Lee, Jae Won;Chun, Wanjoo;Lee, Sang Hyuk;Nam, Yang Hoon;Park, Jin Myung;Choi, Dae Hee;Kang, Chang Don;Lee, Sung Joon;Park, Sung Chul
    • Biomolecules & Therapeutics
    • /
    • v.23 no.2
    • /
    • pp.128-133
    • /
    • 2015
  • Although coffee is known to have antioxidant, anti-inflammatory, and antitumor properties, there have been few reports about the effect and mechanism of coffee compounds in colorectal cancer. Heat shock proteins (HSPs) are molecular chaperones that prevent cell death. Their expression is significantly elevated in many tumors and is accompanied by increased cell proliferation, metastasis and poor response to chemotherapy. In this study, we investigated the cytotoxicity of four bioactive compounds in coffee, namely, caffeine, caffeic acid, chlorogenic acid, and kahweol, in HT-29 human colon adenocarcinoma cells. Only kahweol showed significant cytotoxicity. Specifically, kahweol increased the expression of caspase-3, a pro-apoptotic factor, and decreased the expression of anti-apoptotic factors, such as Bcl-2 and phosphorylated Akt. In addition, kahweol significantly attenuated the expression of HSP70. Inhibition of HSP70 activity with triptolide increased kahweol-induced cytotoxicity. In contrast, overexpression of HSP70 significantly reduced kahweol-induced cell death. Taken together, these results demonstrate that kahweol inhibits colorectal tumor cell growth by promoting apoptosis and suppressing HSP70 expression.

Increased Free Circulating DNA Integrity Index as a Serum Biomarker in Patients with Colorectal Carcinoma

  • El-Gayar, Dina;El-Abd, Nevine;Hassan, Noha;Ali, Reem
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.939-944
    • /
    • 2016
  • Background: Cell-free DNA circulating in blood is a candidate biomarker for malignant tumors. Unlike uniformly truncated DNA released from apoptotic non diseased cells, DNA released from necrotic cancer cells varies in size. Objectives: To measure the DNA integrity index in serum and the absolute DNA concentration to assess their clinical utility as potential serum biomarkers for colorectal carcinoma (CRC) compared to CEA and CA19-9. Materials and Methods: Fifty patients with CRC, 10 with benign colonic polyps and 20 healthy sex and age matched volunteers, were investigated by real time PCR of ALU repeats (ALU q-PCR) using two sets of primers (115 and 247 bp) amplifying different lengths of DNA fragments. The DNA integrity index was calculated as the ratio of q-PCR results of ALU 247/ALU 115bp. Results: Serum DNA integrity was statistically significantly higher in CRC patients compared to the benign and control groups (p<0.001). ROC curves for differentiating CRC patients from normal controls and benign groups had areas under curves of 0.90 and 0.85 respectively. Conclusions: The DNA integrity index is superior to the absolute DNA concentration as a potential serum biomarker for screening and diagnosis of CRC. It may also serve as an indicator for monitoring the progression of CRC patients. Combining CEA and CA19-9 with either of the genetic markers studied is better than either of them alone.

Differential microbiota network according to colorectal cancer lymph node metastasis stages

  • Yeuni Yu;Donghyun Han;Hyomin Kim;Yun Hak Kim;Dongjun Lee
    • Journal of Genetic Medicine
    • /
    • v.20 no.2
    • /
    • pp.52-59
    • /
    • 2023
  • Purpose: Colorectal cancer (CRC) is a common malignancy worldwide and the second leading cause of cancer-related deaths. In addition, lymph node metastasis in CRC is considered an important prognostic factor for predicting disease recurrence and patient survival. Recent studies demonstrated that the microbiome makes substantial contributions to tumor progression, however, there is still unknown about the microbiome associated with lymph node metastasis of CRC. Here, we first reported the microbial and tumor-infiltrating immune cell differences in CRC according to the lymph node metastasis status. Materials and Methods: Using Next Generation Sequencing data acquired from 368 individuals diagnosed with CRC (N0, 266; N1, 102), we applied the LEfSe to elucidate microbial differences. Subsequent utilization of the Kaplan-Meier survival analysis enabled the identification of particular genera exerting significant influence on patient survival outcomes. Results: We found 18 genera in the N1 group and 3 genera in the N0 group according to CRC lymph node metastasis stages. In addition, we found that the genera Crenobacter (P=0.046), Maricaulis (P=0.093), and Arsenicicoccus (P=0.035) in the N0 group and Cecembia (P=0.08) and Asanoa (P=0.088) in the N1 group were significantly associated with patient survival according to CRC lymph node metastasis stages. Further, Cecembia is highly correlated to tumor-infiltrating immune cells in lymph node metastasized CRC. Concolusion: Our study highlights that tumor-infiltrating immune cells and intratumoral microbe diversity are associated with CRC. Also, this potential microbiome-based oncology diagnostic tool warrants further exploration.

Growth Inhibition and Apoptosis Induction of Sulindac on Human Lung Cancer Cells (비소세포 폐암 세포주에서 Sulindac의 성장억제와 세포고사 유도)

  • Kim, Hak Ryul;Yang, Sei Hoon;Jeong, Eun Taik
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.5
    • /
    • pp.514-522
    • /
    • 2004
  • Background : Non-steroidal anti-inflammatory drugs (NSAID) are useful in chemoprevention of colorectal cancers. Continuous NSAID administation causes 40% to 50% reduction in relative risk for colorectal cancer. Sulindac possesses an antiproliferative effect and induces apoptosis and tumor regression on colon cancer and other types of cancers. We intended to analyze the effects of sulindac in three non-small cell lung cancer cell lines. Materials and Methods : The human lung cancer cell lines, A549, NCI-H157 and NCI-H460 were used for this study. Viability was tested by MTT assay, and cell death rate was measured by lactate dehydrogenase(LDH) release. Apoptosis was estimated by flow cytometric analysis and nuclear staining. Results: Sulindac was able to decrease the viability of non-small cell lung cancer cells in a dose- and time- dependent manner. In a parallel effect of sulindac on cell death rate, LDH release was increased in sulindac-treated lung cancer cells. Sulindac significantly increased apoptosis characterized by an increase of $sub-G_0/G_1$ fraction and morphological change of nuclei. The rate of apoptotic cells after sulindac treatment in lung cancer cells increased in a time- and dose- dependent manner in flow cytometric analysis. Apoptotic cells were defined as nuclear shrinkage, chromatin condensation and nuclear fragmentation of cells. Conclusion : Sulindac decreases viability and induces the apoptosis of lung cancer cells. Further studies will be needed to elucidate the potential mechanism of sulindac-induced apoptosis in lung cancer cells.

Suppression of Cellular Apoptosis Susceptibility (CSE1L) Inhibits Proliferation and Induces Apoptosis in Colorectal Cancer Cells

  • Zhu, Jin-Hui;Hong, De-Fei;Song, Yong-Mao;Sun, Li-Feng;Wang, Zhi-Fei;Wang, Jian-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.1017-1021
    • /
    • 2013
  • The cellular apoptosis susceptibility (CSE1L) gene has been demonstrated to regulate multiple cellular mechanisms including the mitotic spindle check point as well as proliferation and apoptosis. However, the importance of CSE1L in human colon cancer is largely unknown. In the present study, we examined expression levels of CSE1L mRNA by semiquantitative RT-PCR. A lentivirus-mediated small interfering RNA (siRNA) was used to knock down CSE1L expression in the human colon cancer cell line RKO. Changes in CSE1L target gene expression were determined by RT-PCR. Cell proliferation was examined by a high content screening assay. In vitro tumorigenesis was measured by colony-formation assay. Cell cycle distribution and apoptosis were detected by flow cytometric analysis. We found CSE1L mRNA to be expressed in human colon cancer cells. Using a lentivirus based RNAi approach, CSE1L expression was significantly inhibited in RKO cells, causing cell cycle arrest in the G2/M and S phases and a delay in cell proliferation, as well as induction of apoptosis and an inhibition of colony growth capacity. Collectively, the results suggest that silencing of CSE1L may be a potential therapeutic approach for colon cancer.

Cancer Vaccines (암백신)

  • Son, Eun-Wha;In, Sang-Whan;Pyo, Suhk-Neung
    • IMMUNE NETWORK
    • /
    • v.5 no.2
    • /
    • pp.55-67
    • /
    • 2005
  • Cancer vaccine is an active immunotherapy to stimulate the immune system to mount a response against the tumor specific antigen. Working as a stimulant to the body's own immune system, cancer vaccines help the body recognize and destroy targeted cancers and may help to shrink advanced tumors. Research is currently underway to develop therapeutic cancer vaccines. It is also possible to develop prophylactic vaccines in the future. The whole cell approach to eradicate cancer has used whole cancer cells to make vaccine. In an early stage of this approach, whole cell lysate or a mixture of immunoadjuvant and inactivated cancer cells has been used. Improved vaccines are being developed that utilize cytokines or costimulatory molecules to mount an attack against cancer cells. In case of melanoma, these vaccines are expected to have a therapeutic effect of vaccine. Furthermore, it is attempting to treat stomach cancer, colorectal cancer, pancreatic cancer, and prostate cancer. Other vaccines are being developing that are peptide vaccine, recombinant vaccine and dendritic cell vaccine. Out of them, reintroduction of antigen-specific dendritic cells into patient and DNA vaccine are mostly being conducted. Currently, research and development efforts are underway to develop therapeutic cancer vaccine such as DNA vaccine for the treatment of multiple forms of cancers.

Induction of Apoptosis by Sageretia thea Branch Extracts through Activation of NF-κB Signaling Pathway in Human Colorectal Cancer Cells (상동나무(Sageretia thea) 가지추출물의 대장암세포에서 NF-κB 신호전달 활성화를 통한 세포사멸 유도활성)

  • Kim, Jeong Dong;Park, Su Bin;Eo, Hyun Ji;Park, Gwang Hun;Jeong, Jin Boo
    • Korean Journal of Plant Resources
    • /
    • v.33 no.5
    • /
    • pp.428-435
    • /
    • 2020
  • In this study, we evaluated the inhibitory effect against cell growth and potential molecular mechanism of 100% ethanol extracts of branch from Sageretia thea in human colorectal cancer cells, HCT116. Ethanol dose-dependently extracts of STB significantly suppressed the growth of HCT116 cells through apoptosis. STB activated NF-κB signaling pathway through IκB-α proteasomal degradation and inducing p65 accumulation in nucleus. The inhibition of GSK3β by LiCl didn't affect STB mediated degradation IκB-α but STB mediated p65 accumulation in nucleus. In addition, STB phosphorylated GSK3β. Based on these findings, STB may be a potential candidate for the development of anti-cancer agents for human colorectal cancer.

Acetate decreases PVR/CD155 expression via PI3K/AKT pathway in cancer cells

  • Tran, Na Ly;Lee, In Kyu;Choi, Jungkyun;Kim, Sang-Heon;Oh, Seung Ja
    • BMB Reports
    • /
    • v.54 no.8
    • /
    • pp.431-436
    • /
    • 2021
  • In recent years, restoring anti-tumor immunity has garnered a growing interest in cancer treatment. As potential therapeutics, immune checkpoint inhibitors have demonstrated benefits in many clinical studies. Although various methods have been applied to suppress immune checkpoints to boost anti-tumor immunity, including the use of immune checkpoint inhibitors, there are still unmet clinical needs to improve the response rate of cancer treatment. Here, we show that acetate can suppress the expression of poliovirus receptor (PVR/CD155), a ligand for immune checkpoint, in colon cancer cells. We demonstrated that acetate treatment could enhance effector responses of CD8+ T cells by decreasing the expression of PVR/CD155 in cancer cells. We also found that acetate could reduce the expression of PVR/CD155 by deactivating the PI3K/AKT pathway. These results demonstrate that acetate-mediated expression of PVR/CD155 in cancer cells might potentiate the anti-tumor immunity in the microenvironment of cancer. Our findings indicate that maintaining particular acetate concentrations could be a complementary strategy in current cancer treatment.

Suppression of Prostaglandin E2-Mediated Cell Proliferation and Signal Transduction by Resveratrol in Human Colon Cancer Cells

  • Song, Su-Hyun;Min, Hye-Young;Lee, Sang-Kook
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.402-410
    • /
    • 2010
  • Although the overproduction of prostaglandin $E_2$ ($PGE_2$) in intestinal epithelial cells has been considered to be highly correlated with the colorectal carcinogenesis, the precise mechanism of action remains poorly elucidated. Accumulating evidence suggests that the PGE receptor (EP)-mediated signal transduction pathway might play an important role in this process. In the present study, we investigated the mechanism of action underlying $PGE_2$-mediated cell proliferation and the effect of resveratrol on the proliferation of human colon cancer cells in terms of the modulating $PGE_2$-mediated signaling pathway. $PGE_2$ stimulated the proliferation of several human colon cancer cells and activated growth-stimulatory signal transduction, including Akt and ERK. $PGE_2$ also increased the phosphorylation of GSK-$3{\beta}$, the translocation of ${\beta}$-catenin into the nucleus, and the expressions of c-myc and cyclin D1. Resveratrol, a cancer chemopreventive phytochemical, however, inhibited $PGE_2$-induced growth stimulation and also suppressed $PGE_2$-mediated signal transduction, as well as ${\beta}$-catenin/T cell factor-mediated transcription in human colon cancer cells. These findings present an additional mechanism through which resveratrol affects the regulation of human colon cancer cell growth.