• 제목/요약/키워드: Colorectal

Search Result 1,342, Processing Time 0.023 seconds

EID3 Promotes Glioma Cell Proliferation and Survival by Inactivating AMPKα1

  • Xiang, Yaoxian;Zhu, Lei;He, Zijian;Xu, Lei;Mao, Yuhang;Jiang, Junjian;Xu, Jianguang
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.790-800
    • /
    • 2022
  • Objective : EID3 (EP300-interacting inhibitor of differentiation) was identified as a novel member of EID family and plays a pivotal role in colorectal cancer development. However, its role in glioma remained elusive. In current study, we identified EID3 as a novel oncogenic molecule in human glioma and is critical for glioma cell survival, proliferation and invasion. Methods : A total of five patients with glioma were recruited in present study and fresh glioma samples were removed from patients. Four weeks old male non-obese diabetic severe combined immune deficiency (NOD/SCID) mice were used as transplant recipient models. The subcutaneous tumor size was calculated and recorded every week with vernier caliper. EID3 and AMP-activated protein kinase α1 (AMPKα1) expression levels were confirmed by real-time polymerase chain reaction and Western blot assays. Colony formation assays were performed to evaluate cell proliferation. Methyl thiazolyl tetrazolium (MTT) assays were performed for cell viability assessment. Trypan blue staining approach was applied for cell death assessment. Cell Apoptosis DNA ELISA Detection Kit was used for apoptosis assessment. Results : EID3 was preferentially expressed in glioma tissues/cells, while undetectable in astrocytes, neuronal cells, or normal brain tissues. EID3 knocking down significantly hindered glioma cell proliferation and invasion, as well as induced reduction of cell viability, apoptosis and cell death. EID3 knocking down also greatly inhibited tumor growth in SCID mice. Knocking down of AMPKα1 could effectively rescue glioma cells from apoptosis and cell death caused by EID3 absence, indicating that AMPKα1 acted as a key downstream regulator of EID3 and mediated suppression effects caused by EID3 knocking down inhibition. These findings were confirmed in glioma cells generated patient-derived xenograft models. AMPKα1 protein levels were affected by MG132 treatment in glioma, which suggested EID3 might down regulate AMPKα1 through protein degradation. Conclusion : Collectively, our study demonstrated that EID3 promoted glioma cell proliferation and survival by inhibiting AMPKα1 expression. Targeting EID3 might represent a promising strategy for treating glioma.

The UGT1A9*22 genotype identifies a high-risk group for irinotecan toxicity among gastric cancer patients

  • Lee, Choong-kun;Chon, Hong Jae;Kwon, Woo Sun;Ban, Hyo-Jeong;Kim, Sang Cheol;Kim, Hyunwook;Jeung, Hei-Cheul;Chung, Jimyung;Rha, Sun Young
    • Genomics & Informatics
    • /
    • v.20 no.3
    • /
    • pp.29.1-29.12
    • /
    • 2022
  • Several studies have shown associations between irinotecan toxicity and UGT1A genetic variations in colorectal and lung cancer, but only limited data are available for gastric cancer patients. We evaluated the frequencies of UGT1A polymorphisms and their relationship with clinicopathologic parameters in 382 Korean gastric cancer patients. Polymorphisms of UGT1A1*6, UGT1A1*27, UGT1A1*28, UGT1A1*60, UGT1A7*2, UGT1A7*3, and UGT1A9*22 were genotyped by direct sequencing. In 98 patients treated with irinotecan-containing regimens, toxicity and response were compared according to the genotype. The UGT1A1*6 and UGT1A9*22 genotypes showed a higher prevalence in Korean gastric cancer patients, while the prevalence of the UG1A1*28 polymorphism was lower than in normal Koreans, as has been found in other studies of Asian populations. The incidence of severe diarrhea after irinotecan-containing treatment was more common in patients with the UGT1A1*6, UGT1A7*3 and UGT1A9*22 polymorphisms than in controls. The presence of the UGT1A1*6 allele also showed a significant association with grade III-IV neutropenia. Upon haplotype and diplotype analyses, almost every patient bearing the UGT1A1*6 or UGT1A7*3 variant also had the UGT1A9*22 polymorphism, and all severe manifestations of UGT1A polymorphism-associated toxicity were related to the UGT1A9*22 polymorphism. By genotyping UGT1A9*22 polymorphisms, we could identify high-risk gastric cancer patients receiving irinotecan-containing chemotherapy, who would experience severe toxicity. When treating high-risk patients with the UGT1A9*22 polymorphism, clinicians should closely monitor them for signs of toxicity such as severe diarrhea or neutropenia.

Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing (CEA 발현 마우스 종양모델에서 Cyclophosphamide와 수지상세포 백신의 병합치료에 의한 상승적인 항종양 효과)

  • Park, Mi-Young
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.54 no.1
    • /
    • pp.38-48
    • /
    • 2022
  • Carcinoembryonic antigen (CEA) is an oncofetal antigen primarily detected in the peripheral blood of cancer patients, particularly in those with colorectal cancer. CEA is considered a valuable target for antigen-specific immunotherapy. In this study, we induced the anti-tumor immunity for CEA through the administration of a dendritic cell (DC) vaccine. However, there was a limitation in inducing tumor regression in the DC vaccinated mice. To enhance the efficacy of anti-tumor immunity in MC38/CEA2 tumor-bearing mice, we evaluated the effects of DC vaccine in combination with cyclophosphamide (CYP). Administration of CYP 100 mg/kg in mice resulted in significant inhibition of tumor growth in the 2-day tumor model, whereas a lower inhibition of tumor growth was seen in the 10-day tumor model. Therefore, the 10-day tumor model was selected for testing chemo-immunotherapy. The combined CYP and DC vaccine not only increased tumor antigen-specific immune responses but also induced synergistic anti-tumor immunity. Furthermore, the adverse effects of CYP such as weight loss and immunosuppression by regulatory T cells and myeloid-derived suppressor cells showed a significant reduction in the combined chemo-immunotherapy treatment compared with CYP alone. Our data suggest that chemoimmunotherapy with the DC vaccine may offer a new therapeutic strategy to induce a potent anti-tumor effect and reduce the adverse effects of chemotherapy.

Anti-inflammation and Anti-cancer Activity of Methanol Extract of Antarctic Lichen, Usnea Aurantiaco-atra (남극 지의류 Usnea Aurantiaco-atra의 메탄올 추출물의 항염증 및 항암 활성)

  • Sung-Suk Suh
    • Journal of Life Science
    • /
    • v.33 no.12
    • /
    • pp.978-986
    • /
    • 2023
  • Inflammation by the innate immune system is a protective mechanism of the organism against infection-mediated environmental factors. It is also responsible for the pathogenesis of various human diseases, including the progression of cancer. Lichens are receiving increasing attention as a source of bioactive molecules with therapeutic potential for a variety of diseases. Additionally, the antioxidant, anti-inflammatory, and anticancer potential of lichen and its secondary metabolites have been widely reported. However, the underlying mechanism is still unknown. In the present study, to investigate molecular mechanisms of anti-inflammation and anti-cancer activity in the Antarctic lichen, Usnea aurantiaco-atra, methanol extract of Usnea aurantiaco-atra (MEUS) was used in vitro assays in RAW 264.7 macrophages cell and HCT116 colon cancer cells. Based on our data, MEUS had the anti-inflammatory activity through the modulation of main inflammatory indicators such as COX-2, IL-6, iNOS, TNF-α and NO production in a concentration-dependent manner. In addition, we observed that MEUS had cytotoxic activity against HCT116 colon cancer cells in a concentration-dependent manner, leading to a significantly reduced proliferation of the cancer cells through apoptotic induction by activating caspase-3. Taken together, this work firstly reported the anti-inflammatory and anti-cancer activities of an Antarctic lichen, Usnea aurantiaco-atra, and MEUS may provide a new insight into the molecular mechanisms underlying a link between inflammation and cancer.

Analysis of the cause-specific proportional hazards model with missing covariates (누락된 공변량을 가진 원인별 비례위험모형의 분석)

  • Minjung Lee
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.2
    • /
    • pp.225-237
    • /
    • 2024
  • In the analysis of competing risks data, some of covariates may not be fully observed for some subjects. In such cases, excluding subjects with missing covariate values from the analysis may result in biased estimates and loss of efficiency. In this paper, we studied multiple imputation and the augmented inverse probability weighting method for regression parameter estimation in the cause-specific proportional hazards model with missing covariates. The performance of estimators obtained from multiple imputation and the augmented inverse probability weighting method is evaluated by simulation studies, which show that those methods perform well. Multiple imputation and the augmented inverse probability weighting method were applied to investigate significant risk factors for the risk of death from breast cancer and from other causes for breast cancer data with missing values for tumor size obtained from the Prostate, Lung, Colorectal, and Ovarian Cancer Screen Trial Study. Under the cause-specific proportional hazards model, the methods show that race, marital status, stage, grade, and tumor size are significant risk factors for breast cancer mortality, and stage has the greatest effect on increasing the risk of breast cancer death. Age at diagnosis and tumor size have significant effects on increasing the risk of other-cause death.

Role of Dedicated Subspecialized Radiologists in Multidisciplinary Team Discussions on Lower Gastrointestinal Tract Cancers

  • Sun Kyung Jeon;Se Hyung Kim;Cheong-il Shin;Jeongin Yoo;Kyu Joo Park;Seung-Bum Ryoo;Ji Won Park;Tae-You Kim;Sae-Won Han;Dae-Won Lee;Eui Kyu Chie;Hyun-Cheol Kang
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.732-741
    • /
    • 2022
  • Objective: To determine the impact of dedicated subspecialized radiologists in multidisciplinary team (MDT) discussions on the management of lower gastrointestinal (GI) tract malignancies. Materials and Methods: We retrospectively analyzed the data of 244 patients (mean age ± standard deviation, 61.7 ± 11.9 years) referred to MDT discussions 249 times (i.e., 249 cases, as five patients were discussed twice for different issues) for lower GI tract malignancy including colorectal cancer, small bowel cancer, GI stromal tumor, and GI neuroendocrine tumor between April 2018 and June 2021 in a prospective database. Before the MDT discussions, dedicated GI radiologists reviewed all imaging studies again besides routine clinical reading. The referring clinician's initial diagnosis, initial treatment plan, change in radiologic interpretation compared with the initial radiology report, and the MDT's consensus recommendations for treatment were collected and compared. Factors associated with changes in treatment plans and the implementation of MDT decisions were analyzed. Results: Of the 249 cases, radiologic interpretation was changed in 73 cases (29.3%) after a review by dedicated GI radiologists, with 78.1% (57/73) resulting in changes in the treatment plan. The treatment plan was changed in 92 cases (36.9%), and the rate of change in the treatment plan was significantly higher in cases with changes in radiologic interpretation than in those without (78.1% [57/73] vs. 19.9% [35/176], p < 0.001). Follow-up records of patients showed that 91.2% (227/249) of MDT recommendations for treatment were implemented. Multiple logistic regression analysis revealed that the nonsurgical approach (vs. surgical approach) decided through MDT discussion was a significant factor for patients being managed differently than the MDT recommendations (odds ratio, 4.48; p = 0.017). Conclusion: MDT discussion involving additional review of radiology examinations by dedicated GI radiologists resulted in a change in the treatment plan in 36.9% of cases. Changes in treatment plans were significantly associated with changes in radiologic interpretation.

Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets

  • Jinbao Li;Jianmin Zhang;Xinlin Jin;Shiyin Li;Yingbin Du;Yongqing Zeng;Jin Wang;Wei Chen
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • Objective: Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. Methods: The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT-PCR) to examine the mechanism of oxidative damage. Results: A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. Conclusion: Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.

Two-Day Fraction Gamma Knife Radiosurgery for Large Brain Metastasis

  • Joo-Hwan Lee;In-Young Kim;Shin Jung;Tae-Young Jung;Kyung-Sub Moon;Yeong-Jin Kim;Sue-Jee Park;Sa-Hoe Lim
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.5
    • /
    • pp.560-567
    • /
    • 2024
  • Objective : We investigated how treating large brain metastasis (LBM) using 2-day fraction Gamma Knife radiosurgery (GKRS) affects tumor control and patient survival. A prescription dose of 10.3 Gy was applied for 2 consecutive days, with a biologically effective dose equivalent to a tumor single-fraction dose of 16.05 Gy and a brain single-fraction dose of 15.12 Gy. Methods : Between November 2017 and December 2021, 42 patients (mean age, 68.3 years; range, 50-84 years; male, 29 [69.1%]; female, 13 [30.9%]) with 44 tumors underwent 2-day fraction GKRS to treat large volume brain metastasis. The main cancer types were non-small cell lung cancer (n=16), small cell lung cancer (n=7), colorectal cancer (n=7), breast cancer (n=3), gastric cancer (n=2), and other cancers (n=7). Twenty-one patients (50.0%) had a single LBM, 19 (46.3%) had a single LBM and other metastases, and two had two (4.7%) large brain metastases. At the time of the 2-day fraction GKRS, the tumors had a mean volume of 23.1 mL (range, 12.5-67.4). On each day, radiation was administered at a dose of 10.3 Gy, mainly using a 50% isodose-line. Results : We obtained clinical and magnetic resonance imaging follow-up data for 34 patients (81%) with 35 tumors, who had undergone 2-day fraction GKRS. These patients did not experience acute or late radiation-induced complications during follow-up. The median and mean progression-free survival (PFS) periods were 188 and 194 days, respectively. The local control rates at 6, 9, and 12 months were 77%, 40%, and 34%, respectively. The prognostic factors related to PFS were prior radiotherapy (p=0.019) and lung cancer origin (p=0.041). Other factors such as tumor volumes, each isodose volumes, and peri-GKRS systemic treatment were not significantly related to PFS. The overall survival period of the 44 patients following repeat stereotactic radiosurgery (SRS) ranged from 15-878 days (median, 263±38 days; mean, 174±43 days) after the 2-day fraction GKRS. Eight patients (18.2%) were still alive. Conclusion : Considering the unsatisfactory tumor control, a higher prescription dose should be needed in this procedure as a salvage management. Moreover, in the treatment for LBM with fractionated SRS, using different isodoses and prescription doses at the treatment planning for LBMs should be important. However, this report might be a basic reference with the same fraction number and prescription dose in the treatment for LBMs with frame-based SRS.

Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro

  • Ahmed, Hanaa H;Abd-Rabou, Ahmed A;Hassan, Amal Z;Kotob, Soheir E
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.16
    • /
    • pp.7179-7188
    • /
    • 2015
  • Cancer is a major health obstacle around the world, with hepatocellular carcinoma (HCC) and colorectal cancer (CRC) as major causes of morbidity and mortality. Nowadays, there isgrowing interest in the therapeutic use of natural products for HCC and CRC, owing to the anticancer activity of their bioactive constituents. Boswellia serrata oleo gum resin has long been used in Ayurvedic and traditional Chinese medicine to alleviate a variety of health problems such as inflammatory and arthritic diseases. The current study aimed to identify and explore the in vitro anticancer effect of B. Serrata bioactive constituents on HepG2 and HCT 116 cell lines. Phytochemical analysis of volatile oils of B. Serrata oleo gum resin was carried out using gas chromatography-mass spectrometry (GC/MS). Oleo-gum-resin of B. Serrata was then successively extracted with petroleum ether (extract 1) and methanol (extract 2). Gas-liquid chromatography (GLC) analysis of the lipoidal matter was also performed. In addition, a methanol extract of B. Serrata oleo gum resin was phytochemically studied using column chromatography (CC) and thin layer chromatography (TLC) to obtain four fractions (I, II, III and IV). Sephadex columns were used to isolate ${\beta}$-boswellic acid and identification of the pure compound was done using UV, mass spectra, $^1H$ NMR and $^{13}C$ NMR analysis. Total extracts, fractions and volatile oils of B. Serrata oleo-gum resin were subsequently applied to HCC cells (HepG2 cell line) and CRC cells (HCT 116 cell line) to assess their cytotoxic effects. GLC analysis of the lipoidal matter resulted in identification of tricosane (75.32%) as a major compound with the presence of cholesterol, stigmasterol and ${\beta}$-sitosterol. Twenty two fatty acids were identified of which saturated fatty acids represented 25.6% and unsaturated fatty acids 74.4% of the total saponifiable fraction. GC/MS analysis of three chromatographic fractions (I,II and III) of B. Serrata oleo gum resin revealed the presence of pent-2-ene-1,4-dione, 2-methyl- levulinic acid methyl ester, 3,5- dimethyl- 1-hexane, methyl-1-methylpentadecanoate, 1,1- dimethoxy cyclohexane, 1-methoxy-4-(1-propenyl)benzene and 17a-hydroxy-17a-cyano, preg-4-en-3-one. GC/MS analysis of volatile oils of B. Serrata oleo gum resin revealed the presence of sabinene (19.11%), terpinen-4-ol (14.64%) and terpinyl acetate (13.01%) as major constituents. The anti-cancer effect of two extracts (1 and 2) and four fractions (I, II, III and IV) as well as volatile oils of B. Serrata oleo gum resin on HepG2 and HCT 116 cell lines was investigated using SRB assay. Regarding HepG2 cell line, extracts 1 and 2 elicited the most pronounced cytotoxic activity with $IC_{50}$ values equal 1.58 and $5.82{\mu}g/mL$ at 48 h, respectively which were comparable to doxorubicin with an $IC_{50}$ equal $4.68{\mu}g/mL$ at 48 h. With respect to HCT 116 cells, extracts 1 and 2 exhibited the most obvious cytotoxic effect; with $IC_{50}$ values equal 0.12 and $6.59{\mu}g/mL$ at 48 h, respectively which were comparable to 5-fluorouracil with an $IC_{50}$ equal $3.43{\mu}g/mL$ at 48 h. In conclusion, total extracts, fractions and volatile oils of B. Serrata oleo gum resin proved their usefulness as cytotoxic mediators against HepG2 and HCT 116 cell lines with different potentiality (extracts > fractions > volatile oil). In the two studied cell lines the cytotoxic acivity of each of extract 1 and 2 was comparable to doxorubicin and 5-fluorouracil, respectively. Extensive in vivo research is warranted to explore the precise molecular mechanisms of these bioactive natural products in cytotoxicity against HCC and CRC cells.

Antigenotoxic and Anticarcinogenic Effects of Styela plicata (오만둥이(Styela plicata)의 항유전독성 및 대장암 억제효과에 관한 연구)

  • Seo, Bo-Young;Kim, Jung-Mi;Lee, Seung-Cheol;Park, Eun-Ju
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.7
    • /
    • pp.839-845
    • /
    • 2009
  • Colorectal cancer is the third most common malignant neoplasm in the world. Much attention has been focused on reducing colon cancer risk through medical properties of natural compound that could act as anticarcinogens. In this study, we evaluated the antioxidant and antigenotoxic effects of Styela plicata (S. plicata) from in vitro experiments. S. plicata extracts showed antioxidant activity measured by TRAP assay and antigenotoxic effect in $200{\mu}M$ $H_2O_2$ induced DNA damage in human leukocytes. Especially, freeze-dried S. plicata extracted with methanol showed the highest level of TRAP (0.225 mM) and inhibition of DNA damage (66.8%). Additionally we observed the effect of S. plicata on the formation of aberrant crypt foci (ACF) induced by dimethylhydrazine (DMH) and DMH induced DNA damage (by comet assay) in male SD rats. The animals were divided into three groups and fed high-fat and low fiber diet (100 g lard+20 g cellulose/kg diet) without (normal control and DMH control) or with a 3% (w/w) of lyophilized S. plicata powder (DMH+S. plicata). One week after beginning the diets, rats were treated with DMH (30 mg/kg, s.c.) for 6 weeks except for normal control group, which was treated saline instead; dietary treatments were continued for the entire experiment. Nine weeks after DMH injection, administration of S. plicata resulted in reduction of ACF numbers, to 82.7% of the carcinogen control value ($7.67{\pm}2.04$ vs. $1.33{\pm}0.53$: p<0.01). S. plicata supplementation induced antigenotoxic effect on DMH-induced DNA damage in the blood cell (% tail intensity: $6.79{\pm}0.26$ vs. $6.13{\pm}0.22$). These data indicate that S. plicata extract has antigenotoxic and anticarcinogenic effects from in vitro experiments and S. plicata exerts a protective effect on the process of colon carcinogenesis, possibly by suppressing the DMH-induced DNA damage in blood cell and the development of preneoplastic lesions in colon.