• Title/Summary/Keyword: Color transfer

Search Result 323, Processing Time 0.029 seconds

A study of the color reproducibility and color fastness of digital textile printing for nylon sublimation transfer (나일론 승화전사 디지털 프린팅의 컬러 재현성 및 견뢰도에 관한 연구)

  • Choi, Gyung-Me;Kim, Ki-Hoon
    • The Research Journal of the Costume Culture
    • /
    • v.26 no.5
    • /
    • pp.754-763
    • /
    • 2018
  • This study examined the color reproducibility and color fastness of digital textile printing for nylon sublimation transfer. After measuring the temperature and time suited to nylon sublimation transfer, the researchers conducted various tests for comparison and analysis including polyester transfer paper on polyester fabric to check dyeing characteristics, color change, sharpness, and the rubbing fastness of the dyeing samples for nylon sublimation transfer. These tests produced the following results. At $185^{\circ}C$ and $187^{\circ}C$, the sublimation transfer dyeing characteristics of nylon were similar to those of polyester and the researchers even observed superior color development in some colors; at a low temperature of $180^{\circ}C$, the sample that was worked on had the lowest level of color development. The examination of color difference (${\Delta}E$), which compared $L^*a^*b^*$ values, showed that the ${\Delta}E$ value of magenta was 10.34, that of yellow was 24.70, and that of black was 15.28. These results highlight the important role of heat treatment temperature and time on color development in nylon sublimation transfer. Concerning sharpness, the samples subjected to higher temperature heat treatment exhibited fewer color spreading phenomena around lines. Thus, dyeing properties and fastness can be enhanced by elongating time at low temperatures and shortening time at high temperatures; however, considering production time constraints as well as the need to produce industrially marketable quantities, the findings of this study suggest that the heat treatment temperature most suitable for nylon sublimation transfer is $187^{\circ}C$ for a duration of 50 seconds.

Comparative Study on Colors Between Korean Traditional Color and Digital Transfer Textile Printing -Focusing on The Red-Series of Korean Traditional Standard colors- (한국 전통색채와 디지털 전사 날염 색채 비교연구 -한국전통표준색명의 적색계를 중심으로-)

  • Park, Suhrin;Kim, Jongjun
    • Journal of Fashion Business
    • /
    • v.20 no.1
    • /
    • pp.98-114
    • /
    • 2016
  • This research study was performed to compare between Korean traditional color and digital transfer textile printing. This would help to find the new direction to apply Korean traditional colors to modern textile industry. The objective of this study is to digitalize Korean traditional colors to be applied to modern textiles, based on research studies by previous researchers, on the actualization of Korean traditional colors for textiles. The study focused on 21 red colors among others. Digital color palette of graphic program was printed on 6 different polyester textiles by using digital transfer textile printing. Different things to be supplemented were found by comparing the results with the colors of Korean traditional standard color names. After measuring the colors, Munsell color system and CIE $L^*a^*b^*$ value were measured then comparative study was performed on the measured values using 3D graphs. Measured colors of Munsell varied by color but in overall, chroma became low while brightness became high. Color characteristic of warm colors got weakened by turning into cold colors as brightness got high but yellow and red got low due to the characteristics of CIE $L^*a^*b^*$ value. This study has limitations with color analysis of digital transfer textile printing due to standardization of textiles and standardization of traditional colors however it can support to actualize the colors for the design using traditional color names by visualizing the color change of digital transfer textile printing in the future.

Color and Fastness Properties of Nylon Transfer Digital Textile Printing(DTP) using Acrylic-based Polymer as Pre-treatment Agent (나일론 전사 DTP 원단 전처리에 따른 발색성 및 견뢰도 특성)

  • Kim, Hyeok-Jin;Hong, Jin-Pyo;Kwak, Dong-Sup;Seo, Hye-Ji;Kim, Hyun-Jo
    • Textile Coloration and Finishing
    • /
    • v.31 no.2
    • /
    • pp.88-97
    • /
    • 2019
  • In this study, when printed on a nylon material, the color strength and fastness are lower than that of a polyester material, and the nylon material shrinks due to heat and pressure, resulting in poor design and poor compatibility. To overcome this problem, we investigated the possibility of transfer DTP by adding pre-treatment process to nylon transfer DTP process. For the basic study of pre-treatment preparation, we used pure nylon material which is not compounded and dispersion ink and transfer paper applied to existing PET transfer DTP. Pre-treatment preparations were classified into three types of acryl-base polymer and pre-treated with nylon and then applied to transfer DTP to confirm their color strength and fastness. The color strength of the pre-treated nylon material increased and poly-methyl-acrylate amulsion pre-treatment showed the best color at $210^{\circ}C$, 1.5m/min and 0.3MPa. The nylon material pre-treated with washing, friction, and light fastness was judged to be more excellent and stable.

Modified Local Color Transfer with Color Category Map (컬러 카테고리 맵을 이용한 수정된 지역적인 색변환)

  • Ha, Ho-Gun;Kyung, Wang-Jun;Kim, Dae-Chul;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.67-73
    • /
    • 2012
  • Local color transfer is the process of assigning a given color to a local region in a target image. The local region that contains the given color has to be segmented. Conventionally, the segmentation of the corresponding local region in a target image is based on the color distance. The region which is the closest in color distance is separated. However, since the close range of color distance separating a given color from target image is ambiguous and uncertain, color distortion is often generated around a separated local region. Therefore, this paper addresses the problem of segmentation in a local color transfer. To prevent color distortion, a modified color influence map is proposed with color categories. First, the target image is roughly segmented using a color category map, which groups similar colors in color space. It restricts the color transfer to a specific color category according to a given color. Second, modified color influence map assigning different weight to lightness and chroma, respectively, is used instead of Euclidian color distance. Then, by combining a modified color influence map and color category map filtered with anisotropic diffusion, a local region that contains a given color can be segmented more strictly than conventional method.

Color Transfer using Color Contrast Based Templates (색의대비 기반 템플릿을 이용한 색상 변환)

  • Park, Young-Sup;Yoon, Kyung-Hyun;Lee, Eun-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.5
    • /
    • pp.633-643
    • /
    • 2009
  • We propose a color transfer method that used color contrast based templates to express the visual difference clearly between objects, while remaining the quality of the input image. Our algorithm employs colors of both the input image and template distributed on the $a^{\ast}b^{\ast}$chrominance plane of CIE $L^{\ast}a^{\ast}b^{\ast}$color space. The templates are made by considering the effect of color contrast and have the shape of either a line or a curve represented color distribution of the basic colors based gradation image. These tempates can be modeled on spline curves. We also generate simply new templates with the different basic colors by moving the control points of that curve. The color transfer method using the templates is done through a regressive analysis and color matching. We maintained color coherence of the input image by transforming similarly the color distribution of an input image to the one of templates.

  • PDF

Color Transfer Method Based on Separation of Saturation (채색 분리 기반의 색 변환 기법)

  • Kwak, Jung-Min;Kim, Jae-Hyup;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.149-159
    • /
    • 2008
  • We present new methods which transfer the color style of a source image into an arbitrary given reference image. Misidentification problem of color cause wrong indexing in low saturation. Therefore, the proposed method do indexing after Image separating chromatic and achromatic color from saturation. The proposed method is composed of the following four steps : In the first step, Image separate chromatic and achromatic color from saturation using threshold. In the second step, image of separation do indexing using cylindrical metric. In the third step, the number and positional dispersion of pixel decide the order of priority for each index color. And average and standard deviation of each index color be calculated. In the final step, color be transferred in Lab color space, and post processing to removal noise and pseudo-contour. Experimental results show that the proposed method is effective on indexing and color transfer.

Image quality assessment of color LCD monitors by polychromatic modulation transfer function (다색광전달함수를 사용한 컬러 LCD 모니터의 광학적 상평가법)

  • Song, Jong-Sup;Jo, Jae-Heung;Hong, Sung-Mok;Lee, Yun-Woo;Yang, Ho-Soon;Cho, Hyun-Mo;Lee, In-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.63-70
    • /
    • 2005
  • We propose a method for evaluating the image quality of color liquid crystal display(LCD) monitors by using the polychromatic modulation transfer function(PMTF), which is calculated from the modulation transfer function(MTF) weighted by the overall color response of the system including the test LCD monitor. We confirm that experimental results using the PMTF agree well with simulated results of the PMTF of a color LCD monitor by using three bar targets with different amplitudes and three elementary colors such as red(R), green(G), and blue(B). As a results, we should choose the PMTF instead of the white color MTF or monochromatic MTF in order to evaluate correctly the image quality of color LCD monitors.

Development of White LED Lamp Having High Color Uniformity With Transfer Molding Technology (트랜스퍼 몰딩 방식을 이용한 고 색 균일성 특성을 가지는 백색 LED 램프)

  • Yu, Soon-Jae;Kim, Do-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.38-41
    • /
    • 2010
  • Compared to conventional molding technology, the color uniformity of light direction emitted from LED is improved with PCB type lead frame technology in which metal thin film is used and transfer molding technology which makes the density of phosphor uniform by manufacturing high density LED lamp. The light efficiency and the color uniformity of the LED are improved by molding the phosphor layer outside of chip and controlling the thickness of the phosphor layer. CIE x,y difference of LED in major axis is also improved uniformly from 0 to 90 degrees.

Develop ECO-FREE high concentration Full black dye using transfer printing and application technology (전사날염용 ECO-FREE 고농도 Full Black 염료개발과 응용기술)

  • Cho, Ho-Hyun;Chung, Myung-Hee;Lee, A-Ram
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.19 no.2
    • /
    • pp.39-48
    • /
    • 2017
  • Transfer printing is a method to combine printing and dyeing technology by the use of sublimation. It is an environmentally-friendly printing method that saves costs, reduces the production processes by the omission of the washing process, and saves time by maintaining quality. Due to the development of transfer printing, a high value added printing technology is available now but color fastness to sublimation of the printing products is still low since there are few dyes that have an affinity to the fabrics and the application technology is still inadequate. Specially, in case of high concentration black dyes, eco-label type black dyes, which is a substitution for general dispersal dyes, have been developed while general dispersal black dyes are still used, creating issues such as color differences on the surface and back side of the fabrics and contamination by friction after transfer printing. There are also some restricted substances such as allergens. To address these issues, high concentration black dyes and application technology that are environmentally-friendly and that have over 16 K/S through the use of single dyes with excellent color fastness, fixation ability, and similar melting temperature were developed for this study.

  • PDF

Developing textile design having watercolor effect and woven texture using Photoshop for Transfer Digital Textile Printing(DTP)

  • Kim, Sin-Hee
    • Journal of Fashion Business
    • /
    • v.13 no.6
    • /
    • pp.89-98
    • /
    • 2009
  • Computer development and new printing technology allow us to express a new type of digital textile designs those were not possible in the past. In this study, watercolor overlaying effect of various colors was tried using airbrush tool in Photoshop program. Photoshop program is a powerful graphic tool and can be used in textile design area to generate various types of designs. Woven texture was also applied to the design to give yarn dyed effects or rich appearance. Photoshop program was also used to develop woven texture without the help of the professional textile CAD. Photoshop channels enables the designers to apply various textures to the image. Plain weave and houndstooth were applied in this study. Colorways of the developed designs having watercolor effect and woven texture by applying Photoshop color adjustment function. Quick and simultaneous changes of colors were possible using this method. The developed textile designs were printed by transfer DTP. Successful textile design prints were expressed and showed watercolor overlaying effect and woven texture. The printed textiles show a little brighter color, and therefore, sample printing is recommendable in case of color sensitive production.