• Title/Summary/Keyword: Color sensor

Search Result 517, Processing Time 0.027 seconds

Merging of KOMPSAT-1 EOC Image and MODIS Images to Survey Reclaimed Land

  • Ahn, Ki-Won;Shin, Seok-Hyo;Kim, Sang-Cheol;Seo, Doo-Chun
    • Korean Journal of Geomatics
    • /
    • v.3 no.1
    • /
    • pp.59-65
    • /
    • 2003
  • The merging of different scales or multi-sensor image data is becoming a widely used procedure of the complementary nature of various data sets. Ideally, the merging method should not distort the characteristics of the high-spatial and high-spectral resolution data used. To present an effective merging method for survey of reclaimed land using the high-resolution (6.6 m) Electro-Optical Camera (EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1 (KOMPSA T-l) and the multispectral Moderate Resolution Imaging Spectroradiometer (MODIS) image data, this paper compares the results of Intensity Hue Saturation (IHS) and Principal Component Analysis (PCA) methods. The comparison is made by statistical and visual evaluation of three-color combination images of IHS and PCA results based on spatial and spectral characteristics. The use of MODIS bands 1, 2, and 3 with a contrast stretched EOC panchromatic image as a substitute for intensity was found to be particularly effective in this study.

  • PDF

Study on the Coverage by COMS OCI FOV

  • Kang C. H.;Seo S. B.;Lim H. S.;Park D. J.;Ahn S. I.;Koo I. H.;Hyun D. H.;Yang H. M.;Choi H. J.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.336-339
    • /
    • 2004
  • Communication, Ocean and Meteorological Satellite (COMS) has been developed by Korean Aerospace Research Institute (KARI) since 2003. Ocean Color Imager (OCI) is the one of COMS payloads, which will monitor the marine environment around Korean peninsula routinely with the intermediate resolution. But considering COMS is to be located in the geostationary orbit, required geographical coverage is not positioned in the nadir direction of COMS but in specific location with horizontal and vertical offsets from the nadir. In this study, coverage by OCI Field Of View (FOV) is analyzed. First of all, OCI is modeled as the sensor which is a $2,500{\times}2,500$ sized 2-D CCD and the pixel resolution is about 500m. And then, OCI is simulated to be controlled to target the required coverage accurately. As a result of it, coverage by OCI FOV is determined. Finally, all coverages by OCI FOV are mapped.

  • PDF

MULTISPECTRAL REMOTE SENSING ALGORITHMS FOR PARTICULATE ORGANIC CARBON (POC) AND ITS TEMPORAL AND SPATIAL VARIATION

  • Son, Young-Baek;Wang, Meng-Hua;Gardner, Wilford D.
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.450-453
    • /
    • 2006
  • Hydrographic data including particulate organic carbon (POC) from the Northeastern Gulf of Mexico (NEGOM) study were used along with remotely sensed data obtained from NASA's Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to develop POC algorithms to estimate POC concentration based on empirical and model-based principal component analysis (PCA) methods. In Case I and II waters empirical maximized simple ratio (MSR) and model-based PCA algorithms using full wavebands (blue, green and red wavelengths) provide more robust estimates of POC. The predicted POC concentrations matched well the spatial and seasonal distributions of POC measured in situ in the Gulf of Mexico. The ease in calculating the MSR algorithm compared to PCA analysis makes MSR the preferred algorithm for routine use. In order to determine the inter-annual variations of POC, MSR algorithms applied to calculate 100 monthly mean values of POC concentrations (September 1997-December 2005). The spatial and temporal variations of POC and sea surface temperature (SST) were analyzed with the empirical orthogonal function (EOF) method. POC estimates showed inter-annual variation in three different locations and may be affected by El $Ni{\tilde{n}}o/Southern$ Oscillation (ENSO) events.

  • PDF

Image Retrieval using Multiple Features on Mobile Platform (모바일 플랫폼에서 다중 특징 기반의 이미지 검색)

  • Lee, Yong-Hwan;Cho, Han-Jin;Lee, June-Hwan
    • Journal of Digital Convergence
    • /
    • v.12 no.6
    • /
    • pp.237-243
    • /
    • 2014
  • In this paper, we propose a mobile image retrieval system which utilizes the mobile device's sensor information and enables running in a variety of the environments, and implement the system on Android platform. The proposed system deals with a new image descriptor using combination of the visual feature with EXIF attributes in the target of JPEG image, and image matching algorithm which is optimized to the mobile environments. Experiments are performed on the Android platform, and the experimental results revealed that the proposed algorithm exhibits a significant improved results with large image database.

Optical Design of CubeSat Reflecting Telescope

  • Jin, Ho;Pak, Soojong;Kim, Sanghyuk;Kim, Youngju
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.110.1-110.1
    • /
    • 2014
  • The optics of Space telescope is one of the major parts of space mission used for imaging observation of astronomical targets and the Earth. These kinds of space mission have a bulky and complex opto-mechanics with a long optical tube, but there are attempts have been made to observe a target with a small satellite in many ways. In this paper, we describe an optical design of a reflecting telescope for use in a CubeSat mission. For this design, we adopt the off-axis segmented method of astronomical observation techniques based on the Ritchey-Chr$\acute{e}$tien type telescope. The primary mirror shape is a rectangle with dimensions of $8cm{\times}8cm$, and a secondary mirror has dimensions of $2.4cm{\times}4.1cm$. The focal ratio is 3 which can obtain a $0.3{\times}0.2$ degree diagonal angle in a $1280{\times}800$ CMOS color image sensor with a pixel size of $3{\mu}m{\times}3{\mu}m$. This optical design can capture a ${\sim}4km{\times}{\sim}2.3km$ area of the earth's surface at 700 km altitude operation. Based on this conceptual design, we will keep trying to study more for astronomical observation with Attitude control system.

  • PDF

A Ubiquitous Vision System based on the Identified Contract Net Protocol (Identified Contract Net 프로토콜 기반의 유비쿼터스 시각시스템)

  • Kim, Chi-Ho;You, Bum-Jae;Kim, Hagbae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.10
    • /
    • pp.620-629
    • /
    • 2005
  • In this paper, a new protocol-based approach was proposed for development of a ubiquitous vision system. It is possible to apply the approach by regarding the ubiquitous vision system as a multiagent system. Thus, each vision sensor can be regarded as an agent (vision agent). Each vision agent independently performs exact segmentation for a target by color and motion information, visual tracking for multiple targets in real-time, and location estimation by a simple perspective transform. Matching problem for the identity of a target during handover between vision agents is solved by the Identified Contract Net (ICN) protocol implemented for the protocol-based approach. The protocol-based approach by the ICN protocol is independent of the number of vision agents and moreover the approach doesn't need calibration and overlapped region between vision agents. Therefore, the ICN protocol raises speed, scalability, and modularity of the system. The protocol-based approach was successfully applied for our ubiquitous vision system and operated well through several experiments.

Research about Intelligent Snake Robot (지능형 뱀 로봇에 관한 연구)

  • Kim, Seong-Joo;Kim, Jong-Soo;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.70-75
    • /
    • 2003
  • There come various types of robot with researches for mobile robot. This paper introduces the multi-joint snake robot having 16 degree of freedom and composing of eight-axis. The biological snake robot uses the forward movement friction and the proposed artificial snake robot uses the un-powered wheel instead of the body of snake. To determine the enable joint angle of each joint, the controller inputs are considered such as color and distance using PC Camera and ultra-sonic sensor module, respectively. The movement method of snake robot is sequential moving from head to tail through body. The target for movement direction is decided by a certain article be displayed in the PC Camera. In moving toward that target, if there is any obstacle then the snake robot can avoid by itself. In this paper, we show the method of snake robot for tracing the target with experiment.

Smart Emotion Lighting Control System Based on Android Platform (안드로이드 플랫폼 기반의 스마트 감성조명 제어 시스템)

  • Jo, Eun-Ja;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.147-153
    • /
    • 2014
  • In this paper, we propose smart emotional lighting control system based on the android platform. The proposed smart emotional lighting control system be configure android platform and sensibility lighting equipment, expansion device, zigbee module. Smart emotional lighting control system based on the android platform is automatic control possible using the illumination sensor, and by selecting the desired lighting partial control can be designed. The experimental results of the proposed smart emotional lighting control sensitivity than conventional lighting control system decreased the power consumption and efficient lighting control was possible. Office acts will be suitable conditions to control the color and brightness, so they can be controlled from the improves concentration and ability to work.

Visual Sensing of the Light Spot of a Laser Pointer for Robotic Applications

  • Park, Sung-Ho;Kim, Dong Uk;Do, Yongtae
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.216-220
    • /
    • 2018
  • In this paper, we present visual sensing techniques that can be used to teach a robot using a laser pointer. The light spot of an off-the-shelf laser pointer is detected and its movement is tracked on consecutive images of a camera. The three-dimensional position of the spot is calculated using stereo cameras. The light spot on the image is detected based on its color, brightness, and shape. The detection results in a binary image, and morphological processing steps are performed on the image to refine the detection. The movement of the laser spot is measured using two methods. The first is a simple method of specifying the region of interest (ROI) centered at the current location of the light spot and finding the spot within the ROI on the next image. It is assumed that the movement of the spot is not large on two consecutive images. The second method is using a Kalman filter, which has been widely employed in trajectory estimation problems. In our simulation study of various cases, Kalman filtering shows better results mostly. However, there is a problem of fitting the system model of the filter to the pattern of the spot movement.

Illumination Compensation Based on Conformity Assessment of Highlight Regions (고휘도 영역의 적합성 평가에 기반한 광원 보상)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.19 no.1
    • /
    • pp.75-82
    • /
    • 2014
  • This paper proposes an illuminant compensation method using a camera noise analysis without segmentation in the dichromatic reflectance model. In general, pixels within highlight regions include large amounts of information on the image illuminant. Thus, the analysis of highlight regions provides a relatively easy means of determining the characteristics of an image illuminant. Currently, conventional methods require regional segmentation and the accuracy of this segmentation then affects the illuminant estimation. Therefore, the proposed method estimates the illuminant without segmentation based on a conformity assessment of highlight regions. Furthermore, error factors, such as noise and sensor non-uniformity, can be reduced by the conformity assessment.