• 제목/요약/키워드: Color sensor

검색결과 520건 처리시간 0.025초

A New Approach of Intensity Predictio in Copper Electroplating Monitoring Using Hybrid HSMM and ANN

  • Wang, Li;Hwan, Ahn-Jong;Lee, Ho-Jae;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.137-137
    • /
    • 2010
  • Copper electroplating is a very popular and important technology for depositing high-quality conductor interconnections, especially in through silicon via (TSV). As this advanced packaging technique developing, a mass of copper and chemical solution are used, so attention to these chemical materials into the utilization and costs can not be ignored. An economical and practical real-time chemical solution monitoring has not been achieved yet. Either Red-green-blue (RGB) or optical emission spectroscopy (OES) color sensor can successfully monitor the color condition of solution during the process. The reaction rate, uniformity and quality can map onto the color changing. Hidden Semi Markov model (HSMM) can establish mapping from the color change to upper indicators, and artificial neural network (ANN) can be integrated to comprehensively determine its targets, whether the solution inside the container can continue to use.

  • PDF

토마토 양액 재배시 비파괴 간이 질소 영양 진단 (Nondestructive Nutrient Diagnosis for Nitrogen with Specific Color Difference Sensor(SCDS) in Hydroponics of Tomato (Lycopersicon esculentum MILL.))

  • 이용범;노미영;조영렬;배종향
    • 생물환경조절학회지
    • /
    • 제4권2호
    • /
    • pp.175-180
    • /
    • 1995
  • 본 연구는 SCDS(specific color difference sensor)를 이용하여 토마토의 비파괴적인 질소 영양 진단 방법을 확립하기 위하여 질소 농도를 0, 10, 50, 100, 150, 200, 300, 600ppm으로 조절하여 NFT방식으로 실험을 수행하였으며 그 결과를 요약하면 다음과 같다. 배양액 내의 질소 농도가 0ppm에서 150ppm으로 높아짐에 따라 토마토 잎의 기공 저항은 급격히 줄어든 반면 기공 확산 속도는 증가하였다. 한편, 질소 농도가 높아짐에 따라 광합성 속도도 증가하였지만 100ppm에서 부터 600ppm까지는 큰 차이를 보이지 않았다. 토마토 잎의 SCDS값이 높아짐에 따라 광합성 속도는 직선적으로 증가하였으며 평균 과중과 상품 수량은 2차 곡선모양으로 증가하는 경향을 보였다. 엽내 질소 함량이 3% 정도될 때까지 광합성 속도는 크게 증가하였지만 3.3-3.5% 수준부터 광합성은 포화상태를 나타냈다. 토마토 잎의 SCDS값과 엽내 질소 함량 간에는 고도로 유의한 정의 상관을 보였다. 토마토의 생리적 활성, 생육 및 상품 수량을 고려해 볼 때, 엽내 질소 함량의 적정 범위는 3.0-3.8%인 것으로 나타났다. 이 범위에 해당되는 SCDS값은 40.4-52.2였다.

  • PDF

Rhodamine Based Fluorescent Chemosensors for Hg2+ and its Biological Application

  • Choi, Ji-Young;Kim, Wan-Tae;Yoon, Ju-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2359-2364
    • /
    • 2012
  • Two new chemosensors, rhodamine 6G derivative bearing hydroxyethyl group (1) and rhodamine base derivative bearing 15-crown-5 group (2) were synthesized and their sensing behaviors toward various metal ions were investigated by UV/Vis and fluorescence spectroscopies. Addition of $Hg^{2+}$ ion to a $CH_3CN$ solution of 1 and 2 gave visual color changes as well as fluorescent OFF-ON observations. Selectivity and sensitivity of 1 towards $Hg^{2+}$ are excellent enough to detect micromolar level of $Hg^{2+}$ ion, even in equeous media and biological sample (HeLa cell).

Color Compensation of an Underwater Imaging System Using Electromagnetic Wave Propagation

  • Inoue, Kotaro;Lee, Min-Chul;Kim, Cheol-Su;Cho, Myungjin
    • Journal of information and communication convergence engineering
    • /
    • 제14권3호
    • /
    • pp.200-206
    • /
    • 2016
  • Images can be obtained by collecting rays from objects. The characteristics of electromagnetic wave propagation depend on the medium. In particular, in an underwater imaging system, the interface between air and water must be considered. Further, reflection and transmission coefficients can be found by using electromagnetic theory. Because of the fact that the values of these coefficients differ according to the media, the recorded light intensities will change. A color image sensor has three different color channels. Therefore, the reflection and transmission coefficients have to be calculated individually. Thereafter, by using these coefficients, we can compensate for the color information of underwater objects. In this paper, we present a method to compensate for the color information of underwater objects by using electromagnetic wave propagation theory. To prove our method, we conducted optical experiments and evaluated the quality of the compensated image by a metric known as mean square error.

천리안해양관측위성을 활용한 해양 재난 검출 시스템 (Ocean Disaster Detection System(OD2S) using Geostationary Ocean Color Imager(GOCI))

  • 양현;유정미;한희정;유주형;박영제
    • 한국IT서비스학회지
    • /
    • 제11권sup호
    • /
    • pp.177-189
    • /
    • 2012
  • We developed the ocean disaster detection system(OD2S) which copes with the occurrences of ocean disasters (e. g. the red and green tide, the oil spill, the typhoon, and the sea ice) by converging and integrating the ocean color remote sensing using the satellite and the information technology exploiting the mass data processing and the pattern recognitions. This system which is based on the cosine similarity detects the ocean disasters in real time. The existing ocean color sensors which are operated in the polar orbit platforms cannot conduct the real time observation of ocean environments because they support the low temporal resolutions of one observation a day. However, geostationary ocean color imager(GOCI), the first geostationary ocean color sensor in the world, produces the ocean color images(e. g. the chlorophyll, the colored dissolved organic matter(CDOM), and the total suspended solid(TSS)), with high temporal resolutions of hourly intervals up to eight observations a day. The evaluation demonstrated that the OD2S can detect the excessive concentration of chlorophyll, CDOM, and TSS. Based on these results, it is expected that OD2S detects the ocean disasters in real time.

시변 변환 행렬을 이용한 시간에 안정된 RGB LED Backlighting 구동 전류 제어 (Driving Current Control for Time-Stable RGB LED Backlighting Using Time-Varying Transform Matrix)

  • 박기현;하영호
    • 대한전자공학회논문지SP
    • /
    • 제46권4호
    • /
    • pp.42-49
    • /
    • 2009
  • 본 논문에서는 red, green, blue(RGB) 광학 센서를 이용하여 RGB light-emitting diode(LED) back light unit(BLU)의 출력색 자극의 변화를 점검하여 RGB LED BLU가 시간에 따라 일정한 목표 색 자극을 출력할 수 있도록 하는 RGB LED BLU 구동 전류 펄스 duty 값을 도출하는 알고리즘을 제안한다. 우선, 현재 RGB LED BLU가 발하는 색 자극 정보를 획득하기 위해 RGB 광학 센서의 출력으로부터 CIEXYZ 색 자극을 계산할 수 있는 RGB to XYZ 변환 행렬을 도출한다. 다양한 RGB LED BLU 색 자극 샘플에 대한 RGB 광학 센서의 출력 값과 CIEXYZ 색 자극 값의 쌍을 이용하여 다항 회귀 방정식을 만들고 각 항의 계수로 행렬을 구성한다. 다음으로, 현재 RGB LED BLU 상태에서 목표 색 자극 값을 발할 수 있는 duty 값을 구하기 위해 목표 색 자극으로부터 duty 값을 계산할 수 있는 XYZ to Duty 변환 행렬을 도출한다. 현재, 한 단계 이전, 두 단계 이전 시점에서 RGB 광학 센서의 출력으로부터 추정한 CIEXYZ 값과 그때 인가된 duty 값의 쌍을 이용하여 다항 회귀 방정식을 만들고 각 항의 계수로 행렬을 구성한다. 일정 시간 간격으로 RGB LED BLU의 출력 색 자극을 점검할 때마다 XYZ to Duty 변환 행렬은 RGB LED BLU의 현재 상태에 적응적으로 변하게 되어 목표 색 자극을 출력할 수 있는 duty 값을 계산할 수 있게 된다.

졸-겔 필름을 이용한 반사형 광섬유 pH 센서의 개발 (Development of Reflection-type Fiber-optic pH Sensor Using Sol-gel Film)

  • 유욱재;서정기;장경원;문진수;한기택;박장연;이봉수;조승현;허지연;박병기
    • 센서학회지
    • /
    • 제20권4호
    • /
    • pp.266-271
    • /
    • 2011
  • A reflection-type fiber-optic pH sensor, which is composed of a pH sol-gel film, plastic optical fibers, a mirror, a light source and a spectrometer, is developed in this study. As pH indicators, a bromthymol blue, a cresol red and a thymol blue are used, and they are immobilized in the sol-gel films. The emitted light from a light source is guided by a fiber-optic Y-coupler and plastic optical fibers to the pH sol-gel film in a pH sensing probe. The pH change in the sensing probe gives rise to a change in the color of the pH sol-gel film, and the optical characteristic of reflected light through the pH sol-gel film is also changed. Therefore, we have measured the spectra of reflected lights, which are changed according to the color variations of the pH sol-gel films with different pH values, by using of a spectrometer. Also, the relationships between the pH values and the intensities of reflected lights are obtained on the basis of the color variations of the pH sol-gel films.

A Design and Implementation Mobile Game Based on Kinect Sensor

  • Lee, Won Joo
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권9호
    • /
    • pp.73-80
    • /
    • 2017
  • In this paper, we design and implement a mobile game based on Kinect sensor. This game is a motion recognition maze game based on Kinect sensor using XNA Game Studio. The game consists of three stages. Each maze has different size and clear time limit. A player can move to the next stage only if the player finds the exit within a limited time. However, if the exit is not found within the time limit, the game ends. In addition, two kinds of mini games are included in the game. The first game is a fruit catch game using motion recognition tracking of the Kinect sensor, and player have to pick up a certain number of randomly falling fruits. If a player acquire a certain number of fruits at this time, the movement speed of the player is increased. However, if a player takes a skeleton that appears randomly, the movement speed will decrease. The second game is a Quiz game using the speech recognition function of the Kinect sensor, and a question from random genres of common sense, nonsense, ancient creature, capital, constellation, etc. are issued. If a player correctly answers more than 7 of 10 questions, the player gets useful items to use in finding the maze. This item is a navigator fairy that helps the player to escape the forest.

Implicit Surface Representation of Three-Dimensional Face from Kinect Sensor

  • 수료 아드히 워보워;김은경;김성신
    • 한국지능시스템학회논문지
    • /
    • 제25권4호
    • /
    • pp.412-417
    • /
    • 2015
  • Kinect sensor has two output data which are produced from red green blue (RGB) sensor and depth sensor, it is called color image and depth map, respectively. Although this device's prices are cheapest than the other devices for three-dimensional (3D) reconstruction, we need extra work for reconstruct a smooth 3D data and also have semantic meaning. It happened because the depth map, which has been produced from depth sensor usually have a coarse and empty value. Consequently, it can be make artifact and holes on the surface, when we reconstruct it to 3D directly. In this paper, we present a method for solving this problem by using implicit surface representation. The key idea for represent implicit surface is by using radial basis function (RBF) and to avoid the trivial solution that the implicit function is zero everywhere, we need to defined on-surface point and off-surface point. Based on our simulation results using captured face as an input, we can produce smooth 3D face and fill the holes on the 3D face surface, since RBF is good for interpolation and holes filling. Modified anisotropic diffusion is used to produced smoothed surface.

연속발진 레이저에 의한 CCD 영상센서의 손상 분석 (Damage Analysis of CCD Image Sensor Irradiated by Continuous Wave Laser)

  • 윤성희;장경영;신완순
    • 한국군사과학기술학회지
    • /
    • 제19권6호
    • /
    • pp.690-697
    • /
    • 2016
  • EOIS(electro-optical imaging system) is the main target of the laser weapon. Specially, the image sensor will be vulnerable because EOIS focuses the incident laser beam onto the image sensor. Accordingly, the laser-induced damage of the image sensor needs to be identified for the counter-measure against the laser attack. In this study, the laser-induced damage of the CCD image sensor irradiated by the CW(continuous wave) NIR(near infrared) laser was experimentally investigated and mechanisms of those damage occurrences were analyzed. In the experiment, the near infrared CW fiber laser was used as a laser source. As the fluence, which is the product of the irradiance and the irradiation time, increased, the permanent damages such as discoloration and breakdown appeared sequentially. The discoloration occurred when the color filter was damaged and then the breakdown occurred when the photodiode and substrate were damaged. From the experimental results, LIDTs(laser-induced damage thresholds) of damages were roughly determined.