• Title/Summary/Keyword: Color machine vision

Search Result 72, Processing Time 0.03 seconds

Calibration for Color Measurement of Lean Tissue and Fat of the Beef

  • Lee, S.H.;Hwang, H.
    • Agricultural and Biosystems Engineering
    • /
    • 제4권1호
    • /
    • pp.16-21
    • /
    • 2003
  • In the agricultural field, a machine vision system has been widely used to automate most inspection processes especially in quality grading. Though machine vision system was very effective in quantifying geometrical quality factors, it had a deficiency in quantifying color information. This study was conducted to evaluate color of beef using machine vision system. Though measuring color of a beef using machine vision system had an advantage of covering whole lean tissue area at a time compared to a colorimeter, it revealed the problem of sensitivity depending on the system components such as types of camera, lighting conditions, and so on. The effect of color balancing control of a camera was investigated and multi-layer BP neural network based color calibration process was developed. Color calibration network model was trained using reference color patches and showed the high correlation with L*a*b* coordinates of a colorimeter. The proposed calibration process showed the successful adaptability to various measurement environments such as different types of cameras and light sources. Compared results with the proposed calibration process and MLR based calibration were also presented. Color calibration network was also successfully applied to measure the color of the beef. However, it was suggested that reflectance properties of reference materials for calibration and test materials should be considered to achieve more accurate color measurement.

  • PDF

소고기 육색 등급 자동 판정을 위한 기계시각 시스템의 칼라 보정 및 정량화 (Quantization and Calibration of Color Information From Machine Vision System for Beef Color Grading)

  • 김정희;최선;한나영;고명진;조성호;황헌
    • Journal of Biosystems Engineering
    • /
    • 제32권3호
    • /
    • pp.160-165
    • /
    • 2007
  • This study was conducted to evaluate beef using a color machine vision system. The machine vision system has an advantage to measure larger area than a colorimeter and also could measure other quality factors like distribution of fats. However, the machine vision measurement is affected by system components. To measure the beef color with the machine vision system, the effect of color balancing control was tested and calibration model was developed. Neural network for color calibration which learned reference color patches showed a high correlation with colorimeter in L*a*b* coordinates and had an adaptability at various measurement environments. The trained network showed a very high correlation with the colorimeter when measuring beef color.

컬러 컴퓨터 시각에 의한 사과 선별 기준색깔 선정 (Selection of Apple Ground Color for Maturity Index Using Color Machine Vision)

  • 서상룡;성제훈
    • Journal of Biosystems Engineering
    • /
    • 제22권2호
    • /
    • pp.210-216
    • /
    • 1997
  • A study to select ground colors of Fuji apple for maturity index which are needed to standardize grading of the apples is presented. Two extreme colors of immature and fully mature Fuji and Zonagold apples produced in Korea were determined. Various ground colors of Fuji apple between the two extreme colors were collected and classified by human vision and colors of Fuji apple for maturity index were selected from the classification. Coordinates of the selected colors in xy chromaticity diagram were determined by spectrophotometers to define them in a standard coordinate system. Coordinates of the colors in r-g chromaticity diagram using a color machine vision system were also determined to use the colors in apple grading by the machine vision system. Grading Fuji apples using the machine vision system was performed and result of the grading was compared with Ending results of human vision and colorimeter. The comparison was performed with the same Fuji apple samples and showed 65% md 75% of same grades, respectively, as the grades determined by the machine vision system. Differences of fading performance between the compared three grading methods were explained as mainly because of the differences of observation area of the grading methods.

  • PDF

기계시각장치에 의한 토마토 작물의 병해엽 검출 (Machine Vision Based Detection of Disease Damaged Leave of Tomato Plants in a Greenhouse)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • 제33권6호
    • /
    • pp.446-452
    • /
    • 2008
  • Machine vision system was used for analyzing leaf color disorders of tomato plants in a greenhouse. From the day when a few leave of tomato plants had started to wither, a series of images were captured by 4 times during 14 days. Among several color image spaces, Saturation frame in HSI color space was adequate to eliminate a background and Hue frame was good to detect infected disease area and tomato fruits. The processed image ($G{\sqcup}b^*$ image) by OR operation between G frame in RGB color space and $b^*$ frame in $La^*b^*$ color space was useful for image segmentation of a plant canopy area. This study calculated a ratio of the infected area to the plant canopy and manually analyzed leaf color disorders through an image segmentation for Hue frame of a tomato plant image. For automatically analyzing plant leave disease, this study selected twenty-seven color patches on the calibration bars as the corresponding to leaf color disorders. These selected color patches could represent 97% of the infected area analyzed by the manual method. Using only ten color patches among twenty-seven ones could represent over 85% of the infected area. This paper showed a proposed machine vision system may be effective for evaluating various leaf color disorders of plants growing in a greenhouse.

기계시각을 이용한 상추의 엽색 및 건강상태 판정 (Determination of Leaf Color and Health State of Lettuce using Machine Vision)

  • 이종환
    • Journal of Biosystems Engineering
    • /
    • 제32권4호
    • /
    • pp.256-262
    • /
    • 2007
  • Image processing systems have been used to measure the plant parameters such as size, shape and structure of plants. There are yet some limited applications for evaluating plant colors due to illumination conditions. This study was focused to present adaptive methods to analyze plant leaf color regardless of illumination conditions. Color patches attached on the calibration bars were selected to represent leaf colors of lettuces and to test a possibility of health monitoring of lettuces. Repeatability of assigning leaf colors to color patches was investigated by two-tailed t-test for paired comparison. It resulted that there were no differences of assignment histogram between two images of one lettuce that were acquired at different light conditions. It supported that use of the calibration bars proposed for leaf color analysis provided color constancy, which was one of the most important issues in a video color analysis. A health discrimination equation was developed to classify lettuces into one of two classes, SOUND group and POOR group, using the machine vision. The classification accuracy of the developed health discrimination equation was 80.8%, compared to farmers' decision. This study could provide a feasible method to develop a standard color chart for evaluating leaf colors of plants and plant health monitoring system using the machine vision.

An Optimal Combination of Illumination Intensity and Lens Aperture for Color Image Analysis

  • Chang, Y. C.
    • Agricultural and Biosystems Engineering
    • /
    • 제3권1호
    • /
    • pp.35-43
    • /
    • 2002
  • The spectral color resolution of an image is very important in color image analysis. Two factors influencing the spectral color resolution of an image are illumination intensity and lens aperture for a selected vision system. An optimal combination of illumination intensity and lens aperture for color image analysis was determined in the study. The method was based on a model of dynamic range defined as the absolute difference between digital values of selected foreground and background color in the image. The role of illumination intensity in machine vision was also described and a computer program for simulating the optimal combination of two factors was implemented for verifying the related algorithm. It was possible to estimate the non-saturating range of the illumination intensity (input voltage in the study) and the lens aperture by using a model of dynamic range. The method provided an optimal combination of the illumination intensity and the lens aperture, maximizing the color resolution between colors of interest in color analysis, and the estimated color resolution at the combination for a given vision system configuration.

  • PDF

컬러 시각을 이용한 사람 손의 검출 (Human Hand Detection Using Color Vision)

  • 김준엽;도용태
    • 센서학회지
    • /
    • 제21권1호
    • /
    • pp.28-33
    • /
    • 2012
  • The visual sensing of human hands plays an important part in many man-machine interaction/interface systems. Most existing visionbased hand detection techniques depend on the color cues of human skin. The RGB color image from a vision sensor is often transformed to another color space as a preprocessing of hand detection because the color space transformation is assumed to increase the detection accuracy. However, the actual effect of color space transformation has not been well investigated in literature. This paper discusses a comparative evaluation of the pixel classification performance of hand skin detection in four widely used color spaces; RGB, YIQ, HSV, and normalized rgb. The experimental results indicate that using the normalized red-green color values is the most reliable under different backgrounds, lighting conditions, individuals, and hand postures. The nonlinear classification of pixel colors by the use of a multilayer neural network is also proposed to improve the detection accuracy.

대두의 자동 선별을 위한 컬러 기계시각장치의 설계 (Design of a Color Machine Vision System for the Automatic Sorting of Soybeans)

  • 김태호;문창수;박수우;정원교;도용태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.231-234
    • /
    • 2003
  • This paper describes the structure, operation, image processing, and decision making techniques of a color machine vision system designed for the automatic sorting of soybeans. The system consists of feeder, conveyor belt, line-scan camera, lights. ejector, and a PC Unlike manufactured goods, agricultural products including soybeans have quite uneven features. The criteria for sorting good and bad beans also vary depending on inspectors. We tackle these problem by letting the system learn the inspecting parameters from good samples selected manually by a machine user before running the system for sorting. Real-time processing has another importance In the design. Four parallel DSPs are employed to increase the processing speed. When the designed system was tested with real soybeans and the result was successful.

  • PDF

기계시각과 퍼지 제어를 이용한 경운작업 트랙터의 자율주행 (Autonomous Tractor for Tillage Operation Using Machine Vision and Fuzzy Logic Control)

  • 조성인;최낙진;강인성
    • Journal of Biosystems Engineering
    • /
    • 제25권1호
    • /
    • pp.55-62
    • /
    • 2000
  • Autonomous farm operation needs to be developed for safety, labor shortage problem, health etc. In this research, an autonomous tractor for tillage was investigated using machine vision and a fuzzy logic controller(FLC). Tractor heading and offset were determined by image processing and a geomagnetic sensor. The FLC took the tractor heading and offset as inputs and generated the steering angle for tractor guidance as output. A color CCD camera was used fro the image processing . The heading and offset were obtained using Hough transform of the G-value color images. 15 fuzzy rules were used for inferencing the tractor steering angle. The tractor was tested in the file and it was proved that the tillage operation could be done autonomously within 20 cm deviation with the machine vision and the FLC.

  • PDF

머신비전을 이용한 리모컨 외관검사 자동화 시스템 개발 (Development of Automatic Remocon Inspection System using Machine Vision)

  • 송기현;허경무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.138-140
    • /
    • 2004
  • In this study, we develop a remocon inspection automatic system using machine vision technique. By our proposed inspection system, the inspection accuracy and processing time was considerably improved.

  • PDF