• Title/Summary/Keyword: Color image detection

Search Result 721, Processing Time 0.023 seconds

Deep Neural Network Technology for Analyzing PDA Colorimetric Transition Sensors in Pathogen Detection (병원균 검출용 PDA 색 전이 센서 분석을 위한 심층신경망 기술)

  • Junhyeon Jeon;Huisoo Jang;Mingyeong Shin;Tae-Joon Jeon;Sun Min Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • In this study, we propose a novel approach for rapid and accurate pathogen detection by integrating Polydiacetylene (PDA) hydrogel sensors with advanced deep learning algorithms and visualization techniques. PDA hydrogel sensors exhibit a color transition in the presence of pathogens, enabling straightforward and quick pathogen detection. We developed a reliable pathogen detection system that combines deep neural network algorithms with color quantification technology for image-based analysis. This image-based system retains the ease of pathogen detection offered by PDA sensors while deriving quantified color standards to overcome the limitations of human visual assessment, enhancing reliability. This advancement contributes to public health and the development and application of pathogen detection technology.

Adult Image Classification using Adaptive Skin Detection and Edge Information (적응적 피부색 검출과 에지 정보를 이용한 유해 영상분류방법)

  • Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a novel method of adult image classification by combining skin color regions and edges in an input image. The proposed method consists of four steps. In the first step, initial skin color regions are detected by logical AND operation of all skin color regions detected by the existing methods of skin color detection. In the second step, a skin color probability map is created by modeling the distribution of skin color in the initial regions. Then, a binary image is generated by using threshold value from the skin color probability map. In the third step, after using the binary image and edge information, we detect final skin color regions using a region growing method. In the final step, adult image classification is performed by support vector machine(SVM). To this end, a feature vector is extracted by combining the final skin color regions and neighboring edges of them. As experimental results, the proposed method improves performance of the adult image classification by 9.6%, compared to the existing method.

Vehicle Detection Method Using Convolution Matching Based on 8 Oriented Color Expression (8 방향 색상 표현 기반 컨벌류션 정합(Convolution Matching)을 이용한 차량 검출기법)

  • Han, Sung-Ji;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.63-73
    • /
    • 2009
  • This paper presents a vehicle detection method that uses convolution matching method based on a simple color information. An input image is expressed as 8 oriented color expression(Red, Green, Blue, White, Black, Cyan, Yellow, Magenta) considering an orientation of a pixel color vector. It makes the image very reliable and strong against changes of illumination condition or environment. This paper divides the vehicle detection into a hypothesis generation step and a hypothesis verification step. In the hypothesis generation step, the vehicle candidate region is found by vertical edge and shadow. In the hypothesis verification step, the convolution matching and the complexity of image edge are used to detect real vehicles. It is proved that the proposed method has the fast and high detection rate on various experiments where the illumination source and environment are changed.

An image enhancement-based License plate detection method for Naturally Degraded Images

  • Khan, Khurram;Choi, Myung Ryul
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1188-1194
    • /
    • 2018
  • This paper proposes an image enhancement-based license plate detection algorithm to improve the overall performance of system. Non-uniform illumination conditions have huge impact on overall plate detection system accuracy. In this paper, we propose an algorithm for color image enhancement-based license plate detection for improving accuracy of images degraded by excessively strong and low sunlight. Firstly, the image is enhanced by Multi-Scale Retinex algorithm. Secondly, a plate detection method is employed to take advantage of geometric properties of connected components, which can significantly reduce the undesired plate regions. Finally, intersection over union method is applied for detecting the accurate location of number plate. Experimental results show that the proposed method significantly improves the accuracy of plate detection system.

Automatic Sputum Color Image Segmentation for Lung Cancer Diagnosis

  • Taher, Fatma;Werghi, Naoufel;Al-Ahmad, Hussain
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.1
    • /
    • pp.68-80
    • /
    • 2013
  • Lung cancer is considered to be the leading cause of cancer death worldwide. A technique commonly used consists of analyzing sputum images for detecting lung cancer cells. However, the analysis of sputum is time consuming and requires highly trained personnel to avoid errors. The manual screening of sputum samples has to be improved by using image processing techniques. In this paper we present a Computer Aided Diagnosis (CAD) system for early detection and diagnosis of lung cancer based on the analysis of the sputum color image with the aim to attain a high accuracy rate and to reduce the time consumed to analyze such sputum samples. In order to form general diagnostic rules, we present a framework for segmentation and extraction of sputum cells in sputum images using respectively, a Bayesian classification method followed by region detection and feature extraction techniques to determine the shape of the nuclei inside the sputum cells. The final results will be used for a (CAD) system for early detection of lung cancer. We analyzed the performance of a Bayesian classification with respect to the color space representation and quantification. Our methods were validated via a series of experimentation conducted with a data set of 100 images. Our evaluation criteria were based on sensitivity, specificity and accuracy.

The Implementation of Day and Night Intruder Motion Detection System using Arduino Kit (아두이노 키트를 이용한 주야간 침입자 움직임 감지 시스템 구현)

  • Young-Oh Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.919-926
    • /
    • 2023
  • In this paper, we implemented the surveillance camera system capable of day and night shooting. To this end, it is designed to capture clear images even at night using a CMOS image sensor as well as an IR-LED. In addition, a relatively simple motion detection algorithm was proposed through color model separation. Motions can be detected by extracting only the H channel from the color model, dividing the image into blocks, and then applying the block matching method using the average color value between consecutive frames. When motions are detected during filming, an alarm sounds automatically and a day and night motion detection system is implemented that can capture and save the event screen to a PC.

Study on Quality Factor Measurement for Cherry Tomato using Color Imagery (칼라영상을 이용한 방울토마토 품질 인자 계측에 관한 연구)

  • Kim, Dae-Yong;Oh, Hyun-Keun;Lee, Nam-Keun;Kim, Young-Sik;Cho, Byung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.2
    • /
    • pp.303-308
    • /
    • 2010
  • Surface color is the most important quality factor for the grade evaluation of cherry tomato. Color is one of the representative indicators for the maturity which is closely related to the internal quality of cherry tomato, such as firmness, sugar content, and acidity. This study was carried out to investigate the relationship between surface color and internal quality of cherry tomatoes harvested from both hydroponic and soil culture at different ripening stages. To calculate the color values of cherry tomatoes an automatic color imaging system was constructed. A specially designed image processing algorithm for the color measurement was developed. The color values of L*, a*, b* were calculated from the initial color values of RGB and then compared with the internal quality. Statistical analyses indicated that the internal quality was more highly correlated with the surface color than size of cherry tomatoes. Color image features were also investigated to detect external damage of cherry tomatoes. The value of (R value - R mean value)/R mean value was the most effective image feature for the detection of damaged areas on the surface of cherry tomatoes. The results of this study demonstrated the feasibility of color sorting process as an alternative of the conventional drum type size sorting system for cherry tomato industry.

Using Analysis of Major Color Component facial region detection algorithm for real-time image (동영상에서 얼굴의 주색상 밝기 분포를 이용한 실시간 얼굴영역 검출기법)

  • Choi, Mi-Young;Kim, Gye-Young;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.8 no.3
    • /
    • pp.329-339
    • /
    • 2007
  • In this paper we present a facial region detection algorithm for real-time image with complex background and various illumination using spatial and temporal methods. For Detecting Human region It used summation of Edge-Difference Image between continuous image sequences. Then, Detected facial candidate region is vertically divided two objected. Non facial region is reduced using Analysis of Major Color Component. Non facial region has not available Major Color Component. And then, Background is reduced using boundary information. Finally, The Facial region is detected through horizontal, vertical projection of Images. The experiments show that the proposed algorithm can detect robustly facial region with complex background various illumination images.

  • PDF

A Study on the YCbCr Color Model and the Rough Set for a Robust Face Detection Algorithm (강건한 얼굴 검출 알고리즘을 위한 YCbCr 컬러 모델과 러프 집합 연구)

  • Byun, Oh-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.117-125
    • /
    • 2011
  • In this paper, it was segmented the face color distribution using YCbCr color model, which is one of the feature-based methods, and preprocessing stage was to be insensitive to the sensitivity for light which is one of the disadvantages for the feature-based methods by the quantization. In addition, it has raised the accuracy of image synthesis with characteristics which is selected the object of the most same image as the shape of pattern using rough set. In this paper, the detection rates of the proposed face detection algorithm was confirmed to be better about 2~3% than the conventional algorithms regardless of the size and direction on the various faces by simulation.

A Hybrid Watermarking Scheme for Color Images (컬러 영상을 위한 하이브리드 워터마킹)

  • Lee Hyun-Suk;Oktavia Vivi;Kim Mi-Ae;Lee Won-Hyung
    • Journal of Internet Computing and Services
    • /
    • v.5 no.3
    • /
    • pp.73-86
    • /
    • 2004
  • This paper presents a hybrid digital watermarking scheme for color images, We insert two watermarks in the DWT domain using spread-spectrum correlation-based watermarking in luminance component of the color image and in spatial domain using pixel-value substitution of blue channel of color image. The objectives of this paper are to have the watermark robust to common signal processing and to detect any changes on the watermarked image for tamper detection at the same time. This watermark scheme will have the robustness characteristic as typical in frequency domain watermark, and also ability to detect any changes on the image (tamper detection).

  • PDF