• Title/Summary/Keyword: Color coordinates

Search Result 299, Processing Time 0.035 seconds

Comparison of the Properties and Extracting Conditions of Juice Preperation from Schizandra nigra (흑오미자 즙액의 추출조건과 추출물의 특성)

  • Park, Moon-Su;Rim, Yo-Sup;Shin, Soo-Cheol
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.4
    • /
    • pp.453-458
    • /
    • 2006
  • To determine the properties for juice preperation of Black Omija (Schizandra nigra MAXIM.) and Omija (Schizandra chinensis BAILL.), yield of extraction, chromaticity and lightness, pH and soluble solid of the extract were investigated. When Schizandra nigra was extracted for 3 hr at $80^{\circ}C$ using 20% aqueous ethanol, the yield of extracts was highest. For the desirable chromaticity coordinates, the optimum extraction time and temperature of Schizandra nigra were 3 hr at $80^{\circ}C$. The lightness of the extract was low of the value when extraction time and temperature was long and high. The sugar content of the extract of Schizandra nigra was ranged between 2.0 and 2.6% Brix, which is lower than that of Schizandra chinensis. Although the pH of the extract from Schizandra nigra was a low in comparison with that of water extract the pH range was proper to maintain the stability of color of extract from the Schizandra chinensis.

The properties and extracting conditions of juice preperation from Schizandra nigra Max. (흑오미자(Schizandra nigra Max) 즙액의 추출조건과 추출물의 특성)

  • 신수철;강성구;장미정
    • Korean Journal of Plant Resources
    • /
    • v.16 no.3
    • /
    • pp.187-193
    • /
    • 2003
  • To determine the properties for juice preperation of Black Omija (Schizandra nigra Max.) and Omija (Schizandra chinensis), yield of extraction, chromaticity and lightness, pH and soluble solid of the extract were investigated. The rate of extract yield from Schizandra nigra was highest when extracted for 3 hours at 80$^{\circ}C$ in 20% ethanol solution. For the desirable chromaticity coordinates, the optimum extraction time and temperature of Schizandra nigra extract were 3 hours at 80$^{\circ}C$. The lightness of the extract was low of the value when extraction time and temperature was long and high. The sugar content of the extract of S. nigra was 2.0­2.6% Brix, lower than that of S. chinensis, but the difference was insignificant. The pH of the extract from S. nigra was 0.1­0.2 higher than that of S. chinensis. Although the pH of the extract from S. nigra was a little low when extracted by water, the pH range was enough to maintain the stability of color of extract from the S. chinensis.

Fabrication of the Low Driving Voltage ZnS:Mn EL Device and Investigation of its Electro-optical Properties (저전압구동 ZnS:Mn EL device의 제작 및 전기 광학적 특성조사)

  • Kim, Jae-Beom;Kim, Do-Hyeong;Jang, Gyeong-Dong;Bae, Jong-Gyu;Nam, Gyeong-Yeop;Lee, Sang-Yun;Jo, Gyeong-Je;Jang, Hun-Sik;Lee, Hyeon-Jeong;Lee, Dong-Uk
    • Korean Journal of Materials Research
    • /
    • v.10 no.4
    • /
    • pp.290-294
    • /
    • 2000
  • ZnS:Mn TFEL devices were fabricated by electron-beam evaporation method and then the electro-optical properties were investigated. To investigate the capacitance which was due to oxygen vacancy at the $Ta_2O_5$ thin film, AES(Auger Electron Spectroscopy) and C-F(capacitance-frequency) measurements were used. It was found that the capacitance was decreased by annealing the $Ta_2O_5$ film in oxygen ambience. From EL emission measurement, we observed the EL emission spectrum which had the peak range from 550nm and 650nm. This emission is associated with the transition from $^4T_1(^4G)$ first excited state to $^6A_1(^6S)$ ground state in the $3d^5$ energy level configuration of $Mn^{2+}$ occurs. The threshold voltage of EL device with $Ta_2O_5$ insulator layer was found to be 24V~28V. The CIE color coordinates of these emission are X=0.5151, Y=0.4202 which is yellowish orange emitting. The EL device using $Ta_2O_5$ insulator layer can be driven with a low voltage which is beneficial to the practical application.

  • PDF

Generation of Feature Map for Improving Localization of Mobile Robot based on Stereo Camera (스테레오 카메라 기반 모바일 로봇의 위치 추정 향상을 위한 특징맵 생성)

  • Kim, Eun-Kyeong;Kim, Sung-Shin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.58-63
    • /
    • 2020
  • This paper proposes the method for improving the localization accuracy of the mobile robot based on the stereo camera. To restore the position information from stereo images obtained by the stereo camera, the corresponding point which corresponds to one pixel on the left image should be found on the right image. For this, there is the general method to search for corresponding point by calculating the similarity of pixel with pixels on the epipolar line. However, there are some disadvantages because all pixels on the epipolar line should be calculated and the similarity is calculated by only pixel value like RGB color space. To make up for this weak point, this paper implements the method to search for the corresponding point simply by calculating the gap of x-coordinate when the feature points, which are extracted by feature extraction and matched by feature matching method, are a pair and located on the same y-coordinate on the left/right image. In addition, the proposed method tries to preserve the number of feature points as much as possible by finding the corresponding points through the conventional algorithm in case of unmatched features. Because the number of the feature points has effect on the accuracy of the localization. The position of the mobile robot is compensated based on 3-D coordinates of the features which are restored by the feature points and corresponding points. As experimental results, by the proposed method, the number of the feature points are increased for compensating the position and the position of the mobile robot can be compensated more than only feature extraction.

2D Interpolation of 3D Points using Video-based Point Cloud Compression (비디오 기반 포인트 클라우드 압축을 사용한 3차원 포인트의 2차원 보간 방안)

  • Hwang, Yonghae;Kim, Junsik;Kim, Kyuheon
    • Journal of Broadcast Engineering
    • /
    • v.26 no.6
    • /
    • pp.692-703
    • /
    • 2021
  • Recently, with the development of computer graphics technology, research on technology for expressing real objects as more realistic virtual graphics is being actively conducted. Point cloud is a technology that uses numerous points, including 2D spatial coordinates and color information, to represent 3D objects, and they require huge data storage and high-performance computing devices to provide various services. Video-based Point Cloud Compression (V-PCC) technology is currently being studied by the international standard organization MPEG, which is a projection based method that projects point cloud into 2D plane, and then compresses them using 2D video codecs. V-PCC technology compresses point cloud objects using 2D images such as Occupancy map, Geometry image, Attribute image, and other auxiliary information that includes the relationship between 2D plane and 3D space. When increasing the density of point cloud or expanding an object, 3D calculation is generally used, but there are limitations in that the calculation method is complicated, requires a lot of time, and it is difficult to determine the correct location of a new point. This paper proposes a method to generate additional points at more accurate locations with less computation by applying 2D interpolation to the image on which the point cloud is projected, in the V-PCC technology.

Translucency of ceramic veneers on glazing effect (세라믹 비니어의 글레이징에 따른 반투명도 변화)

  • Kim, Sung-Joon;Kahm, Se Hoon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.138-143
    • /
    • 2015
  • Purpose: The aim of this study was to compare the translucency of two different laminate ceramic veneers with and without glazing. Materials and methods: Ten millimeter side square-shaped specimens in 0.3 mm and 0.6 mm thick were fabricated for the following materials with and without glazing (n=80): A1 shade IPS e.maxPress (IEM) and Styleveneers (STV). The color coordinates (CIE $L^*a^*b^*$) of the specimens were measured with a colorimeter. The Translucency parameter (TP) was calculated from the color difference of the material on a black versus a white background. For comparisons between materials and between the 'not glazed' and 'glazed' groups, unpaired t-test was used to analyze the data (P=.05). Results: The TP ($Mean{\pm}SD$) of 'not-glazed' and 'glazed' group of IEM specimens at 0.3 mm thickness were $45.99{\pm}3.00$ and $49.53{\pm}2.28$ and the TP at 0.6 mm thickness were $32.82{\pm}2.59$ and $43.02{\pm}0.98$, respectively. Likewise, the TP of 'not-glazed' and 'glazed' group of STV specimens at 0.3 mm thickness were $47.03{\pm}3.65$ and $50.95{\pm}3.05$ and the TP at 0.6 mm thickness group were $34.48{\pm}1.28$ and $43.39{\pm}1.20$, respectively. As the glazing of ceramic veneer differed, the TP of each ceramic veneer showed statistically significant difference. But, the result between the products was not statistically different. Conclusion: Within the limitations of this study, we are concluded that the glazing process changed translucency of laminate ceramic veneers and the TP would not be affected by products.

Usefulness of applying Macro for Brain SPECT Processing (Brain SPECT Processing에 있어서 Macro Program 사용의 유용성)

  • Kim, Gye-Hwan;Lee, Hong-Jae;Kim, Jin-Eui;Kim, Hyeon-Joo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.1
    • /
    • pp.35-39
    • /
    • 2009
  • Purpose: Diagnostic and functional imaging softwares in Nuclear Medicine have been developed significantly. But, there are some limitations which like take a lot of time. In this article, we introduced that the basic concept of macro to help understanding macro and its application to Brain SPECT processing. We adopted macro software to SPM processing and PACS verify processing of Brain SPECT processing. Materials and Methods: In Brain SPECT, we choose SPM processing and two PACS works which have large portion of a work. SPM is the software package to analyze neuroimaging data. And purpose of SPM is quantitative analysis between groups. Results are made by complicated process such as realignment, normalization, smoothing and mapping. We made this process to be more simple by using macro program. After sending image to PACS, we directly input coordinates of mouse using simple macro program for processes of color mapping, adjustment of gray scale, copy, cut and match. So we compared time for making result by hand with making result by macro program. Finally, we got results by applying times to number of studies in 2007. Results: In 2007, the number of SPM studies were 115 and the number of PACS studies were 834 according to Diamox study. It was taken 10 to 15 minutes for SPM work by hand according to expertness and 5 minutes and a half was uniformly needed using Macro. After applying needed time to the number of studies, we calculated an average time per a year. When using SPM work by hand according to expertness, 1150 to 1725 minutes (19 to 29 hours) were needed and 632 seconds (11 hours) were needed for using Macro. When using PACS work by hand, 2 to 3 minutes were needed and for using Macro, 45 seconds were needed. After applying theses time to the number of studies, when working by hand, 1668 to 2502 minutes (28 to 42 hours) were needed and for using Macro, 625 minutes (10 hours) were needed. Following by these results, it was shown that 1043 to 1877 (17 to 31 hours were saved. Therefore, we could save 45 to 63% for SPM, 62 to 75% for PACS work and 55 to 70% for total brain SPECT processing in 2007. Conclusions: On the basis of the number of studies, there was significant time saved when we applied Macro to brain SPECT processing and also it was shown that even though work is taken a little time, there is a possibility to save lots of time according to the number of studies. It gives time on technologist's side which makes radiological technologist more concentrate for patients and reduce probability of mistake. Appling Macro to brain SPECT processing helps for both of radiological technologists and patients and contribute to improve quality of hospital service.

  • PDF

Analysis of Nutritional Components and Physicochemical Properties of Hot-air Dried Jerusalem Artichoke (Helianthus tuberosus L.) Powder (열풍 건조한 돼지감자 분말의 영양성분 및 이화학적 특성 분석)

  • Kim, Ha-Neul;Yu, Seok-Yeong;Yoon, Won-Byong;Jang, Sun-Min;Jang, Yong-Jin;Lee, Ok-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.73-78
    • /
    • 2014
  • This study investigated the nutritional components and physicochemical characteristics of Jerusalem artichoke. The moisture, crude protein, crude fat, crude ash and carbohydrate content of the Jerusalem artichoke were $5.06{\pm}0.08$, $8.30{\pm}0.26$, $0.70{\pm}0.16$, $5.04{\pm}0.03$, and 80.90%, respectively. The total sugar content of Jerusalem artichoke was $50.48{\pm}1.11$ mg/g, and the Hunter color space coordinates were $L=94.16{\pm}0.03$, $a=0.32{\pm}0.01$ and $b=0.30{\pm}0.01$. The water binding capacity and water activity of the Jerusalem artichoke were $4.06{\pm}0.16$ g/g and $0.245{\pm}0.005$, respectively. The total amino-acid content of the Jerusalem artichoke was $1.337{\times}10^4$ mg/kg, and essential amino acid was 2,737 mg/kg. The total free sugar of the Jerusalem artichoke was 4.12%. Linoleic acid (0.21%) was found to be a common fatty acid in the Jerusalem artichoke. Among the minerals, potassium (2,489 mg%) was found to be the most abundant in the Jerusalem artichoke. The total phenol and flavonoid contents were $3.06{\pm}0.07$ mg GAE/g and $1.89{\pm}0.03$ mg QE/g, respectively. The vitamin C content of the Jerusalem artichoke was $3.43{\pm}0.07$ mg%.

A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device (모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실)

  • Zhao, Bi-Cheng;Rosli, Ahmad Nurzid;Jang, Chol-Hee;Lee, Kee-Sung;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.1
    • /
    • pp.1-21
    • /
    • 2012
  • In recent years, mobile phone has experienced an extremely fast evolution. It is equipped with high-quality color displays, high resolution cameras, and real-time accelerated 3D graphics. In addition, some other features are includes GPS sensor and Digital Compass, etc. This evolution advent significantly helps the application developers to use the power of smart-phones, to create a rich environment that offers a wide range of services and exciting possibilities. To date mobile AR in outdoor research there are many popular location-based AR services, such Layar and Wikitude. These systems have big limitation the AR contents hardly overlaid on the real target. Another research is context-based AR services using image recognition and tracking. The AR contents are precisely overlaid on the real target. But the real-time performance is restricted by the retrieval time and hardly implement in large scale area. In our work, we exploit to combine advantages of location-based AR with context-based AR. The system can easily find out surrounding landmarks first and then do the recognition and tracking with them. The proposed system mainly consists of two major parts-landmark browsing module and annotation module. In landmark browsing module, user can view an augmented virtual information (information media), such as text, picture and video on their smart-phone viewfinder, when they pointing out their smart-phone to a certain building or landmark. For this, landmark recognition technique is applied in this work. SURF point-based features are used in the matching process due to their robustness. To ensure the image retrieval and matching processes is fast enough for real time tracking, we exploit the contextual device (GPS and digital compass) information. This is necessary to select the nearest and pointed orientation landmarks from the database. The queried image is only matched with this selected data. Therefore, the speed for matching will be significantly increased. Secondly is the annotation module. Instead of viewing only the augmented information media, user can create virtual annotation based on linked data. Having to know a full knowledge about the landmark, are not necessary required. They can simply look for the appropriate topic by searching it with a keyword in linked data. With this, it helps the system to find out target URI in order to generate correct AR contents. On the other hand, in order to recognize target landmarks, images of selected building or landmark are captured from different angle and distance. This procedure looks like a similar processing of building a connection between the real building and the virtual information existed in the Linked Open Data. In our experiments, search range in the database is reduced by clustering images into groups according to their coordinates. A Grid-base clustering method and user location information are used to restrict the retrieval range. Comparing the existed research using cluster and GPS information the retrieval time is around 70~80ms. Experiment results show our approach the retrieval time reduces to around 18~20ms in average. Therefore the totally processing time is reduced from 490~540ms to 438~480ms. The performance improvement will be more obvious when the database growing. It demonstrates the proposed system is efficient and robust in many cases.