• Title/Summary/Keyword: Color Sensing

Search Result 414, Processing Time 0.025 seconds

The Integration of GIS with LANDSAT TM Data for Ground Water Potential Area Mapping (I) - Extraction of the Ground Water Potential Area using LANDSAT TM Data - (지하수 부존 가능지역 추출을 위한 LANDSAT TM 자료와 GIS의 통합(I) - LANDSAT TM 자료에 의한 지하수 부존 가능지역 추출 -)

  • 지종훈
    • Korean Journal of Remote Sensing
    • /
    • v.7 no.1
    • /
    • pp.29-43
    • /
    • 1991
  • The study was performed to extraction the ground water potential area using LANDSAT TM data. The image processing techniques developed for the study are contrast transformation, differential filtering and pseudo stereoscopic image methods. These were examined for lineament extraction, lineament interpretation and the integration of vertor data with LANDSAT data. The differential filtering method is much usefull for lineament extraction, and all direction lineaments are clearly shown on the band 5 image of LANDSAT TM. The pseudo stereoscopic image are made in which color differential method is adopted, the pair images are usefull for the lineament interpretation. The results of the analysis are as follows. 1) there is a close correlation between lineament and cased well in the study area, because 33 wells of the developed 45 cased wells coincide with the lineaments. 2) 21 sites in the study area were selected for pumping test, and as a result 11 sites of them produces over than 200 ton/day.

Quadratic Programming Approach to Pansharpening of Multispectral Images Using a Regression Model

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.257-266
    • /
    • 2008
  • This study presents an approach to synthesize multispectral images at a higher resolution by exploiting a high-resolution image acquired in panchromatic modality. The synthesized images should be similar to the multispectral images that would have been observed by the corresponding sensor at the same high resolution. The proposed scheme is designed to reconstruct the multispectral images at the higher resolution with as less color distortion as possible. It uses a regression model of the second order to fit panchromatic data to multispectral observations. Based on the regression model, the multispectral images at the higher spatial resolution of the panchromatic image are optimized by a quadratic programming. In this study, the new method was applied to the IKONOS 1m panchromatic and 4m multispectral data, and the results were compared with them of several current approaches. Experimental results demonstrate that the proposed scheme can achieve significant improvement over other methods.

Rabid detection of chloride ions in fresh concrete using a chromium-free paper-based analytical device (µPAD) (경화 전 콘크리트의 염소이온 신속측정 페이퍼 센서 개발에 관한 실험적 연구)

  • Subbiah Karthick;Park, Tae-joon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.123-124
    • /
    • 2023
  • This study successfully developed a chromium-free paper-based analytical device (µPAD) for chloride detection in fresh concrete. The sensing materials were chemically synthesized and coated to the paper through drop casting. The fabricated µPAD was thoroughly tested with various concentrations of chloride ions. Upon interaction with the µPAD, the chloride ions in the solution react with a chromium-free silver compound, exhibiting a specific coloring height proportional to the absolute chloride concentration. The height of the color change during a reaction can vary based on the chloride concentration, which allows for predicting the chloride concentration in a solution. The results reveal that µPAD has extraordinary precision in identifying chloride in fresh concrete, which highlights its immense potential for future applications.

  • PDF

Missions and User Requirements of the 2nd Geostationary Ocean Color Imager (GOCI-II) (제2호 정지궤도 해양탑재체(GOCI-II)의 임무 및 요구사양)

  • Ahn, Yu-Hwan;Ryu, Joo-Hyung;Cho, Seong-Ick;Kim, Suk-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.2
    • /
    • pp.277-285
    • /
    • 2010
  • Geostationary Ocean Color Imager(GOCI-I), the world's first space-borne ocean color observation geostationary satellite, will be launched on June 2010. Development of GOCI-I took about 6 years, and its expected lifetime is about 7 years. The mission and user requirements of GOCI-II are required to be defined at this moment. Because baseline of the main mission of GOCI-II must be defined during the development time and early operational period of GOCI-I. The main difference between these missions is the global-monitoring capability of GOCI-II, which will meet the necessity of the monitoring and research on climate change in the long-term. The user requirements of GOCI-II will have higher spatial resolution, $250m{\times}250m$, and 12 spectral bands to fulfill GOCI-I's user request, which could not be implemented on GOCI-I for technical reasons. A dedicated panchromatic band will be added for the nighttime observation to obtain fishery information. GOCI-II will have a new capability, supporting user-definable observation requests such as clear sky area without clouds and special-event areas, etc. This will enable higher applicability of GOCI-II products. GOCI-II will perform observations 8 times daily, the same as GOCI-I's. Additionally, daily global observation once or twice daily is planned for GOCI-II. In this paper, we present an improved development and organization structure to solve the problems that have emerged so far. The hardware design of the GOCI-II will proceed in conjunction with domestic or foreign space agencies.

A Recurring Eddy off the Korean Northest Coast Captured on Satellite Ocean Color and Sea Surface Temperature Imagery (위성의 해색 영상과 해수면온도 영상을 활용한 재발생 와동류에 관한 연구)

  • ;B.G.Mitchell
    • Korean Journal of Remote Sensing
    • /
    • v.15 no.2
    • /
    • pp.175-181
    • /
    • 1999
  • A recurring eddy which located at the terminal end of the Korean East Warm Current was captured on ocean color and sea surface temperature imagery from satellite in spring and autumn. During late April, 1997 thermal infrared imagery from the NOAA AVHRR sensor and ocean color data from the Japanese ADEOS-I OCTS sensor, revealed this feature. The cold core had elevated chlorophyll concentrations, based on OCTS estimates, of greater than 3 mg/m$^3$ while the warmer surrounding waters had chlorophyll concentrations of 1 mg/m$^3$ or less. The elevated cholophyll accociated with this eddy has not been previously described. The eddy is also evident in SST images from autumn, but the SST in the core is warmer than in spring, and the warm jet flowing to the west of the eddy is also warmer is autumn compared to spring. A reccurring eddy and the high chlorophyll_a concentration area which surround around the eddy show on NOAA and SeaWiFS images in March 2, 1998. The eddy forms at the northern extent of the Korean East Warm Current as those waters collide with the cold, south-flowing Liman Current over a topographic shelf about 1500 m deep. This region of the eddy formation appears to have a strong connection with the dynamics of the western part of the polar front eddy field that dominates surface mesoscale structure in the central East (Japan) Sea. Interaction of the eddy with ARGOW tracked drifters, and evidence for its persistence are discussed.

Sensitivity of Color Indicators to Fermentation Products of Kimchi at Various Temperatures (김치 발효산물에 대한 발색지시계의 온도별 민감성)

  • Hong, Seok-In;Park, Wan-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.21-25
    • /
    • 1997
  • Application of the color indicators to kimchi packages was investigated in order to monitor the ripeness of commercial kimchi products during storage and distribution. Kimchi was packed in polypropylene (PP) tray and nylon/cast polypropylene (Ny/CPP) lid where the indicating sachet consisting of $CO_2$ absorbent and chemical dye (bromocresol purple and methyl red) was attached. The ripeness of kimchi during storage at $0{\sim}20^{\circ}C$ was measured in terms of pH and titratable acidity (TA), which were compared with Hunter color values of the indicators. The color of bromocresol purple dye turned from light blue to purple, while that of methyl red turned from light yellow to red. Regardless of the storage temperatures, Hunter b values of bromocresol purple type and Hunter a values of methyl red type appeared to be proportional to both the pH and TA values of kimchi. These results suggest that the color indicators be employed as one of the effective techniques for sensing the ripeness of packaged kimchi products without destructing the package.

  • PDF

A Study on 3D Reconstruction of Urban Area

  • Park Y. M.;Kwon K. R.;Lee K. W.
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.470-473
    • /
    • 2005
  • This paper proposes a reconstruction method for the shape and color information of 3-dimensional buildings. The proposed method is range scanning by laser range finder and image coordinates' color information mapping to laser coordinate by a fixed CCD camera on laser range finder. And we make a 'Far-View' using high-resolution satellite image. The 'Far-View' is created that the height of building using DEM after contours of building extraction. The user select a region of 'Far View' and then, appear detailed 3D-reconstruction of building The outcomes apply to city plan, 3D-environment game and movie background etc.

  • PDF

Structural Design Development of GOCI

  • Yeon Jeoung-Heum;Kang Song-Doug;Kim Jongah;Kang Gurrl.sil;Myung Hwan-Chun;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.104-107
    • /
    • 2005
  • COMS(Communication, Ocean, and Meteorological Satellite) is the geostationary satellite for the mission of satellite communication, ocean monitoring, and meteorological service. It is scheduled to be launched at the end of 2008. Ocean payload of COMS named as GOCI(Geostationary Ocean Color Imager) observes ocean color and derives the chlorophyll concentrlition, the concentration of dissolved organic material and so on. In operational oceanography, satellite derived data products are used to provide forecasting and now casting of the ocean and coastal water state. In this work, conceptual design of structural part of GOCI is carried out and two baseline concepts are proposed. The one is dioptric module that uses lens system and the other is TMA(Three Mirror Anastigmat) module that uses mirror system. Trade-off studies between two concepts are investigated by considering optical and mechanical performances. Finally, on-going tasks and future development plan are briefly discussed.

  • PDF

Radiometric Calibration Method of the GOCI (Geostationary Ocean Color Imager)

  • Kang, Gumsil;Myung, Hwan-Chun;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.60-63
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of oceancolor around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this paper radiometric calibration concept of the GOCI is introduced. The GOCI radiometric response is modeled as a nonlinear system in order to reflect a nonlinear characteristic of detector. In this paper estimation approaches for radiometric parameters of GOCI model are discussed. For the GOCI, the offset signal depends on each spectral channel because dark current offset signal is a function of integration time which is different from channel to channel. The offset parameter can be estimated by using offset signal measurements for two integration time setting is described.

  • PDF

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF