• Title/Summary/Keyword: Color Model

Search Result 1,684, Processing Time 0.031 seconds

A Study on Comparisons Between Combustion Temperatures Calculated by Two-Region Model and Measured by Two-Color Method in Premixed Constant-Volume Combustion (정적 예혼합기 연소에 있어서 2영역 모델 및 2색법에 의한 연소온도 비교에 관한 연구)

  • S.K.Lee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.300-310
    • /
    • 1999
  • A constant-volume combustion chamber is developed to measure the burnt gas temperature over the wide ranges of equivalence ratio from 1.5 to 2.7 and pressure from 0.1 to 2.7 and pressure from 0.1 to 6 MPa by two-color method. The combustion temperature is also calculated by the conventional two-region model. The premixed fuel rich propane-oxygen-inert gas mixtures under high pressures are simultaneously ignited by eight spark plugs located on the circumference of combustion chamber with 45 degree intervals. The eight converging flames compress the end gases to high pressures. The transmissiv-ity in the chamber center during the final stage of combustion at the highest pressure is measured by in situ laser extinction method. Comparisons are made with the combustion temperatures between two-color method and two-region model. It is found that the burnt gas temperature mea-sured by two-color method is higher than that calculated by two-region model because of being the negative temperature gradient on the calculation and the temperature distribution of light path-length on the measurement and the burnt gas temperature for the turbulent combustion is higher than that of the laminar combustion under the same conditions because the heat loss for turbulent combustion is lower due to the shorter combustion period.

  • PDF

Hand Gesture Recognition Using HMM(Hidden Markov Model) (HMM(Hidden Markov Model)을 이용한 핸드 제스처인식)

  • Ha, Jeong-Yo;Lee, Min-Ho;Choi, Hyung-Il
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.291-298
    • /
    • 2009
  • In this paper we proposed a vision based realtime hand gesture recognition method. To extract skin color, we translate RGB color space into YCbCr color space and use CbCr color for the final extraction. To find the center of extracted hand region we apply practical center point extraction algorithm. We use Kalman filter to tracking hand region and use HMM(Hidden Markov Model) algorithm (learning 6 type of hand gesture image) to recognize it. We demonstrated the effectiveness of our algorithm by some experiments.

  • PDF

Traffic Signal Detection and Recognition Using a Color Segmentation in a HSI Color Model (HSI 색상 모델에서 색상 분할을 이용한 교통 신호등 검출과 인식)

  • Jung, Min Chul
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.92-98
    • /
    • 2022
  • This paper proposes a new method of the traffic signal detection and the recognition in an HSI color model. The proposed method firstly converts a ROI image in the RGB model to in the HSI model to segment the color of a traffic signal. Secondly, the segmented colors are dilated by the morphological processing to connect the traffic signal light and the signal light case and finally, it extracts the traffic signal light and the case by the aspect ratio using the connected component analysis. The extracted components show the detection and the recognition of the traffic signal lights. The proposed method is implemented using C language in Raspberry Pi 4 system with a camera module for a real-time image processing. The system was fixedly installed in a moving vehicle, and it recorded a video like a vehicle black box. Each frame of the recorded video was extracted, and then the proposed method was tested. The results show that the proposed method is successful for the detection and the recognition of traffic signals.

Traffic Signal Recognition System Based on Color and Time for Visually Impaired

  • P. Kamakshi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.48-54
    • /
    • 2023
  • Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.

Studies on Color Classification of Fancy Veneer Flooring Board with HSI Color Model (HSI 색상모델을 이용한 마루판 무늬목의 색상분류에 관한 연구(1))

  • Seo, Jun-Won;Park, Byung-Su;Chong, Song-Ho;Park, Heon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.4 s.132
    • /
    • pp.23-29
    • /
    • 2005
  • The fancy veneer flooring board is high value-added wooden material. The classification of the flooring boards by the observation with the naked eye causes color difference among fancy veneers. It turned out that this inaccuracy of color difference among fancy veneers increased in case of the identification by metamerism or the flooring construction. Therefore, this study was performed to classify fancy veneers produced from 3 species such as Tilia sp., Betula sp., and Acer sp. which were identified with the naked eye by Light and Dark grade, by using CIELAB. In addition, each specie's threshold on CIERGB was investigated and a range of hue, saturation and intensity by an application of HSI color model were studied. Intensity of the HIS color model could be the best value to be used when color, saturation and intensity of the HSI color model were used for the classification of the flooring board's color. In addition, it seemed that color range of all three criteria lied between $45^{\circ}$ and $55^{\circ}$. In the case of identification by threshold of RGB element, considering only specific color element value is unlikely to lead to accurate classification of fancy veneers of flooring board.

Color Image Enhancement Based on an Improved Image Formation Model (개선된 영상 생성 모델에 기반한 칼라 영상 향상)

  • Choi, Doo-Hyun;Jang, Ick-Hoon;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.65-84
    • /
    • 2006
  • In this paper, we present an improved image formation model and propose a color image enhancement based on the model. In the presented image formation model, an input image is represented as a product of global illumination, local illumination, and reflectance. In the proposed color image enhancement, an input RGB color image is converted into an HSV color image. Under the assumption of white-light illumination, the H and S component images are remained as they are and the V component image only is enhanced based on the image formation model. The global illumination is estimated by applying a linear LPF with wide support region to the input V component image and the local illumination by applying a JND (just noticeable difference)-based nonlinear LPF with narrow support region to the processed image, where the estimated global illumination is eliminated from the input V component image. The reflectance is estimated by dividing the input V component image by the estimated global and local illuminations. After performing the gamma correction on the three estimated components, the output V component image is obtained from their product. Histogram modeling is next executed such that the final output V component image is obtained. Finally an output RGB color image is obtained from the H and S component images of the input color image and the final output V component image. Experimental results for the test image DB built with color images downloaded from NASA homepage and MPEG-7 CCD color images show that the proposed method gives output color images of very well-increased global and local contrast without halo effect and color shift.

Color Enhancement of Low Exposure Images using Histogram Specification and its Application to Color Shift Model-Based Refocusing

  • Lee, Eunsung;Kang, Wonseok;Kim, Sangjin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.1
    • /
    • pp.8-16
    • /
    • 2012
  • An image obtained from a low light environment results in a low-exposure problem caused by non-ideal camera settings, i.e. aperture size and shutter speed. Of particular note, the multiple color-filter aperture (MCA) system inherently suffers from low-exposure problems and performance degradation in its image classification and registration processes due to its finite size of the apertures. In this context, this paper presents a novel method for the color enhancement of low-exposure images and its application to color shift model-based MCA system for image refocusing. Although various histogram equalization (HE) approaches have been proposed, they tend to distort the color information of the processed image due to the range limits of the histogram. The proposed color enhancement algorithm enhances the global brightness by analyzing the basic cause of the low-exposure phenomenon, and then compensates for the contrast degradation artifacts by using an adaptive histogram specification. We also apply the proposed algorithm to the preprocessing step of the refocusing technique in the MCA system to enhance the color image. The experimental results confirm that the proposed method can enhance the contrast of any low-exposure color image acquired by a conventional camera, and is suitable for commercial low-cost, high-quality imaging devices, such as consumer-grade camcorders, real-time 3D reconstruction systems, digital, and computational cameras.

  • PDF

Skin Region Extraction Using Color Information and Skin-Color Model (컬러 정보와 피부색 모델을 이용한 피부 영역 검출)

  • Park, Sung-Wook;Park, Jong-Kwan;Park, Jong-Wook
    • 전자공학회논문지 IE
    • /
    • v.45 no.4
    • /
    • pp.60-67
    • /
    • 2008
  • Skin color is a very important information for an automatic face recognition. In this paper, we proposed a skin region extraction method using color information and skin color model. We use the adaptive lighting compensation technique for improved performance of skin region extraction. Also, using an preprocessing filter, normally large areas of easily distinct non skin pixels, are eliminated from further processing. And we use the modified ST color space, where undesired effects are reduced and the skin color distribution fits better than others color space. Experimental results show that the proposed method has better performance than the conventional methods, and reduces processing time by $35{\sim}40%$ on average.

Skin Segmentation Using YUV and RGB Color Spaces

  • Al-Tairi, Zaher Hamid;Rahmat, Rahmita Wirza;Saripan, M. Iqbal;Sulaiman, Puteri Suhaiza
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.283-299
    • /
    • 2014
  • Skin detection is used in many applications, such as face recognition, hand tracking, and human-computer interaction. There are many skin color detection algorithms that are used to extract human skin color regions that are based on the thresholding technique since it is simple and fast for computation. The efficiency of each color space depends on its robustness to the change in lighting and the ability to distinguish skin color pixels in images that have a complex background. For more accurate skin detection, we are proposing a new threshold based on RGB and YUV color spaces. The proposed approach starts by converting the RGB color space to the YUV color model. Then it separates the Y channel, which represents the intensity of the color model from the U and V channels to eliminate the effects of luminance. After that the threshold values are selected based on the testing of the boundary of skin colors with the help of the color histogram. Finally, the threshold was applied to the input image to extract skin parts. The detected skin regions were quantitatively compared to the actual skin parts in the input images to measure the accuracy and to compare the results of our threshold to the results of other's thresholds to prove the efficiency of our approach. The results of the experiment show that the proposed threshold is more robust in terms of dealing with the complex background and light conditions than others.

Wear Debris Analysis using the Color Pattern Recognition (칼라 패턴인식을 이용한 마모입자 분석)

  • ;A.Y.Grigoriev
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.54-61
    • /
    • 2000
  • A method and results of classification of 4 types metallic wear debris were presented by using their color features. The color image of wear debris was used (or the initial data, and the color properties of the debris were specified by HSI color model. Particle was characterized by a set of statistical features derived from the distribution of HSI color model components. The initial feature set was optimized by a principal component analysis, and multidimensional scaling procedure was used for the definition of classification plane. It was found that five features, which include mean values of H and S, median S, skewness of distribution of S and I, allow to distinguish copper based alloys, red and dark iron oxides and steel particles. In this work, a method of probabilistic decision-making of class label assignment was proposed, which was based on the analysis of debris-coordinates distribution in the classification plane. The obtained results demonstrated a good availability for the automated wear particle analysis.

  • PDF