• Title/Summary/Keyword: Color Mapping

Search Result 260, Processing Time 0.026 seconds

A Study on the New Gamut Mapping Method for Digital Color Proofing (디지털 컬러 교정인쇄를 위한 새로운 색역사상 방법에 관한 연구)

  • Song, Kyung-Chul;Kang, Sang-Hoon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.2
    • /
    • pp.119-129
    • /
    • 2002
  • On the process of cross-media color reproduction, a key feature is the use of gamut mapping techniques to adjust the different color gamuts between displays and printers. Even though a nunber of gamut mapping algorithms were published in the past, only limited colorimetric evaluation of them has been carried out to date. In this paper, the multi-anchor points clipping method(MAPC) was proposed as a new gamut mapping algorithm compensating the defects of the current algorithms such as nearest point clipping method(NPC), centroid clipping method(SLIN), straight clipping method(LLIN) and maximum chroma clipping method(CUSP).

  • PDF

Color Look-Up Table Design for Gamut Mapping and Color Space Conversion (색역 사상과 색공간 변환을 위한 칼라 참조표 설계)

  • 김윤태;조양호;이호근;하영호
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.2
    • /
    • pp.1-10
    • /
    • 2004
  • This paper proposes the method that design CLUT(color look-up table) simultaneously processing gamut mapping and color space conversion using only CLUT without complex computation. After CLUT is constructed using scanner gamut and printer gamut, the scanner gamut is extended to include original scanner gamut. This extended scanner gamut is used as input CIE $L^{*}$ $a^{*}$ $b^{*}$ values for CLUT. Then CMY values are computed by using gamut mapping. Input RGB image of scanner is converted into CIE $L^{*}$ $a^{*}$ $b^{*}$ by using regression function. CIE $L^{*}$ $a^{*}$ $b^{*}$ values of scanner are converted into CMY values without computation of additional gamut mapping using the proposed CLUT. In the experiments, the proposed method resulted in the similar color difference, but reduced the complexity computation than the direct computing method to process gamut mapping and color space conversion respectively.espectively.ively.

Gamut Mapping Based on Color Space Division for Enhancement of Lightness Contrast and Chrominance (휘도 대비와 채도 향상을 위한 색 공간 분할 색역 사상)

  • Cho, Yang-Ho;Kim, Yun-Tae;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.5
    • /
    • pp.513-521
    • /
    • 2002
  • This paper proposes a gamut mapping algorithm based on color space division for cross media color reproduction. As each color device has a limited range of producible colors, reproduced colors on a destination device are different from those of the original device. In order to reduce the color difference, the proposed method divides the whole gamut into parabolic shapes based on intersecting lightness by the just noticeable difference (JND) and the original device gamut boundary. Dividing the gamut with parabolic shapes and piecewise mapping of each region not only considers gamut characteristics but also provides for mapping uniformity. Also the lightness variations are more sensitive to the human visual system and by using lightness JND it can restrict lightness mapping variations that are unperceivable to enhance lightness contrast and chrominance. As a result, the proposed algorithm is able to reproduce high quality images using low-cost color devices.

Development of Color Inspection System of Printed Texture using Scanner (스캐너를 이용한 직물의 색상검사기 개발)

  • 조지승;정병묵;박무진
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.70-75
    • /
    • 2003
  • It is very important to inspect the color of printed texture in the textile process. The standard colorimetric system used for the recognition of the color in the textile industry. It uses XYZ color system defined by CIE (Commission Internationale de 1Eclairage), but is too expensive. Therefore, in this paper, we propose a color inspection system of the printed texture using a color scanner. Because the scanner uses RGB value for color, it is necessary the mapping from RGB to XYZ. However, the mapping is not simple, and the scanner has even positional deviation because of the geometric characteristics. To transform from RGB to XYZ, we used a NN (neural network) model and also compensated the positional deviation. In real experiments, we could get fairly exact XYZ value from the proposed color inspection system in spite of using a color scanner with large measuring area.

A Color Correction Method for High-Dynamic-Range Images Based on Human Visual Perception (인간 시각 인지에 기반을 둔 높은 동적폭을 갖는 영상 보정 방법)

  • Choi, Ho-Hyoung;Song, Jae-Wook;Jung, Na-Ra;Kang, Hyun-Soo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.9
    • /
    • pp.1027-1038
    • /
    • 2015
  • For last several decades, the color correction methods have been proposed for HDR(high dynamic range) images. However, color distortion problems take place after correcting the colors such as halos, dominant color as well known. Accordingly, this article presents a novel approach in which the method consists of tone-mapping method and cone response function. In the proposed method, the tone mapping method is used to improve the contrast in the given HDR image based on chromatic and achromatic based on the CIEXYZ tristimulus value, expressed in c/m2. The cone response function is used to deal with mismatch between corrected image and displayed image as well as to estimate various human visual effects based on the CMCAT2000 color appearance model. The experimental results show that the proposed method yields better performance of color correction over the conventional method in subjective and quantitative quality, and color reproduction.

A VLSI Implementation of Color Gamut Mapping Method for Real-Time Display Quality Enhancement

  • Han Dongil
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.122-127
    • /
    • 2004
  • The color gamut mapping method that is used for enhancing the color reproduction quality between PC monitor and printer devices is adopted for display quality enhancement. The high definition display devices operate at the clock speed of around $70\;MHz\;\sim\;150\;MHz$ and permit several nano seconds for real-time processing. Thus, the concept of three-dimensional reduced resolution look-up table is used. The required hardware can be greatly reduced by look-up table resolution adjustment. The proposed hardware architecture is successfully implemented in ASIC and also successfully adopted in display quality enhancement purposes.

  • PDF

Gamut Mapping Algorithm for Image Quality Enhancement (화질 향상을 위한 색역 사상)

  • 김재철;허태욱;조맹섭
    • Proceedings of the IEEK Conference
    • /
    • 2002.06d
    • /
    • pp.251-254
    • /
    • 2002
  • Currently many devices reproduce electronic images in a variety of ways. However, the colors that are reproduced are different from the original color due to the differences in the gamut between devices. In this paper, a gamut mapping method utilizing a simultaneous mapping function and a lightness rescaling is proposed. This method enhance the local-color characteristics and lightness contrast. The experimental result shows that the overall contrast and the colorfulness were increased.

  • PDF

Color Discrimination Enhancement Gamut Mapping Using Color Distribution Rearrangement (색 분포 재배열을 이용한 색 분별력 향상 색역 사상)

  • Lee, Jae-Min;Kim, Kyeong-Man;Lee, Chae-Soo;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.10
    • /
    • pp.58-71
    • /
    • 1999
  • When the same image is displayed in many different devices, the reproduced colors are not same due to the differences in the gamut between devices. Therefore, many gamut mapping method were proposed to solve this problem. In this paper, color discrimination enhancement gamut mapping method using color distribution rearrangement is proposed to reduce the unnecessary distortions by compression mapping and to minimize the decrease of color discrimination by clipping method. The proposed method constructs color distribution, the 3-dimension array of input image's colors. if the maximum of color distribution is within the boundary of printer gamut. the colors are mapped to the same colors. Otherwise, out-of-gamut colors are compressed into the printer gamut with minimum distortion. Consequently, the printer output image was highly consistent with the corresponding monitor image and had an enhanced color discrimination in region where high chroma varied linearly.

  • PDF

Gamut Mapping Using Variable Multiple Anchor Points for Continuous-Tone Color Reproduction (연속계조 칼라재현을 위한 가변 다중 닻점을 이용한 색역 사상)

  • Lee, Chae-Su;Lee, Cheol-Hui;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.55-64
    • /
    • 1999
  • In this paper, new gamut-mapping algorithm (GMA) that utilizes variable anchor points (center of gravity on the luminance axis) is proposed. The proposed algorithm increases luminance range, which is reduced from conventional gamut mapping toward an anchor point. In this process, this algorithm utilizes multiple anchor points with constant slopes to both reduce a sudden color change on the gamut boundary of the printer and to maintain a uniform color change during the mapping process. Accordingly, the proposed algorithm can reproduce high quality images with low-cost color devices.

  • PDF

A Study on Fabric Color Mapping for 2D Virtual Wearing System (2D 가상 착의 시스템의 직물 컬러 매핑에 관한 연구)

  • Kwak, No-Yoon
    • Journal of Digital Contents Society
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2006
  • Mass-customization is fast growing a segment of the apparel market. 2D Virtual wearing system is one of visual support tools that make possible to sell apparel before producing and reduce the time and costs related to product development and manufacturing in the world of apparel mass-customization. This paper is related to fabric color mapping method for 2D image-based virtual wearing system. In proposed method, clothing shape section of interest is segmented from a clothes model image using a region growing method, and then mapping a new fabric color selected by user into it based on its intensity difference map is processed. With the proposed method in 2D virtual wearing system, regardless of color or intensity of model clothes, it is possible to virtually change the fabric color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple fabric color combinations for individual styles or entire outfits.

  • PDF