IEIE Transactions on Smart Processing and Computing
/
제3권6호
/
pp.345-352
/
2014
Edge detection considers the important technical details of digital image processing. Many edge detection operators already perform edge detection in digital color imaging. In this study, the edge of many real color images that represent the type of digital image was detected using a new operator in the least square approximation method, which is a type of numerical method. The Linear Fitting algorithm is computationally more expensive compared to the Canny, LoG, Sobel, Prewitt, HIS, Fuzzy, Parametric, Synthetic and Vector methods, and Robert' operators. The results showed that the new method can detect an edge in a digital color image with high efficiency compared to standard methods used for edge detection. In addition, the suggested operator is very useful for detecting the edge in a digital color image.
영상의 에지정보를 이용한 내용기반 영상 검색 방법은 현재 MPEG-7(Moving Picture Experts Group) 에서 제안된 에지 서술자(edge descriptor)가 대표적인 방법이며, 이때 사용된 에지의 정보는 영상의 명암도에 따른 에지히스토그램을 이용하고 있다. 본 논문에서는 새로운 컬러 에지 추출 방법을 제시하고, 제안된 방법에 의해 컬러 에지히스토그램을 특징 값으로 하는 내용기반 영상검색 방법을 제시하였다. 아울러 제안된 방법에 기반하여 인터넷 쇼핑몰에서 사용되는 e-카탈로그 상품 영상 검색에 적용하였다. 성능평가를 위하여 기존 MPEG-7에서 제시된 에지히스토그램에 의한 영상검색 방법과 비교하여 보았으며 실험결과 제안된 방법이 검색에 있어서 우수함을 입증할 수 있었다. 컬러에지의 추출은 컬러 영상의 R,G,B 채널의 각 성분의 벡터적 결합방법과 에지 맵의 벡터 노름(norm) 특성화를 통하여 이루어진다. 결과적으로 내용기반 영상 검색은 생성된 최종 에지모델이 갖는 에지의 방향성을 이용한 컬러 에지히스토그램을 통하여 수행된다.
RGB 칼라 필터 배열을 사용한 순차주사 CCD 이미지 센서는 센서의 구조적 한계를 극복하고 칼라 신호의 해상도를 향상시키기 위해 칼라 보간 구조가 필요하다. 기존의 접근 방법을 통해 보간된 결과 영상 대부분에서 경계선은 열화되고 재현된 칼라는 원영상의 칼라와 차이가 났다. 본 논문에서는 순차주사 CCD 이미지 센서를 위한 개선된 경계적응적 칼라 보간 구조를 제안했다. 제안된 경계 표시자(edge indicator) 함수는 채널내 상관관계 뿐만 아니라 채널간의 상관관계를 이용하며 주어진 영상의 경계 특성을 칼라 보간 과정에 적응적으로 반영한다. 주어지지 않은 채널 값은 경계를 거스르는 방향이 아니라 경계 방향을 따라서 보간되고, 에일리어징 현상(aliasing artifacts)은 억제가 됐다. 또한 경계적응적 칼라 보간 구조의 단순한 칼라 영상 형성 모델로부터 발생하는 국소적으로 나타나는 잘못된 색을 칼라 경계 검출법에 기반한 스위칭 알고리즘에 의해 제거하였다. 개선된 경계적응적 칼라 보간 구조는 기존의 접근 방법에 비해 주관적 화질과 객관적 화질 모두 우수한 결과를 실험적으로 보였다.
Compared to the bar code which is being widely used for commercial products management, color code is advantageous in both the outlook and the number of combinations. And the color code has application areas complement to the RFID's. However, due to the severe distortion of the color component values, which is easily over $50{\%}$ of the scale, color codes have difficulty in finding applications in the industry. To improve the accuracy of recognition of color codes, it'd better to statistically process an entire color region and then determine its color than to process some samples selected from the region. For this purpose, we suggest a technique to detect edges between color regions in this paper, which is indispensable for an accurate segmentation of color regions. We first transformed RGB color image to HSI and YIQ color models, and then extracted I- and Y-components from them, respectively. Then we performed Canny edge detection on each component image. Each edge image usually had some edges missing. However, since the resulting edge images were complementary, we could obtain an optimal edge image by combining them.
The objectives of this study were to investigate color patterns of shell and mantle edge pigmentation of a Pacific oyster, C. gigas, and to estimate variance components of the two colors. A sample of 240 F0 oysters was collected from six aquaculture farms in Tongyeong, Korea to measure shell color and mantle edge pigmentation. Among the F0s, male and female individuals with black (white) shell and black (white) mantle edge were selected and mated to generate three F1 full-sib black (white) cross families (N = 265). Two and four F2 cross families (N = 286) were also produced from black and white F1 selected individuals, respectively. Variance component estimates due to residuals and families within color were obtained using SAS PROC VARCOMP procedures to estimate heritability of shell and mantle edge pigmentation. In the F0 generation, about 29% (11%) had black (white) color for both shell and mantle edge. However, in the F1 and F2 black (white) cross families, 75% (67%) and 100% (100%) of oysters had black (white) shell colors, and 59% (23%) and 79% (55%) had black (white) mantle edge, respectively. Spearman correlation coefficients between shell and mantle edge color were 0.25, 0.74, and 0.92 in F0, F1, and F2 generations, respectively, indicating that, with generations of selection process, an individual with black (white) shell color is more likely to have black (white) mantle edge pigmentation. This suggests that shell color could be a good indicator trait for mantle edge pigmentation if selection of both the colors is implemented for a couple of generations. Estimates of heritability were 0.41 and 0.77 for shell color and 0.27 and 0.08 for mantle edge pigmentation in the F1 and F2 generations, respectively, indicating that, in general, significant proportions of phenotypic variations for the shell and mantle edge colors are explained by genetic variations between individuals. These results suggest that the two color traits are inheritable and correlated, enabling effective selection on shell and mantle edge color.
Color image edge detection is an important operation in many image processing areas. This paper presents a new method for edge detection based on the Bhattacharyya distance that can handle arbitrary boundaries by exploring several edge patterns. Experiments show promising results compared to some existing methods.
In this paper, we propose a background segmentation method in low resolution color image. A segmentation algorithm is based on color and edge information. In edge image, adaptive and local thresholds are applied to suppress paint boundaries. Through our experiments, the proposed algorithm efficiently segments background from objects.
The performance of edge detection often relies on its ability to correctly determine the dissimilarities of connected pixels. For grayscale images, the dissimilarity of two pixels is estimated by a scalar difference of their intensities and for color images, this is done by using the vector difference (color distance) of the three-color components. The Euclidean distance in the RGB color space typically measures a color distance. However, the RGB space is not suitable for edge detection since its color components do not coincide with the information human perception uses to separate objects from backgrounds. In this paper, we propose a novel method for color edge detection by taking advantage of the HSV color space and the Mahalanobis distance. The HSV space models colors in a manner similar to human perception. The Mahalanobis distance independently considers the hue, saturation, and lightness and gives them different degrees of contribution for the measurement of color distances. Therefore, our method is robust against the change of lightness as compared to previous approaches. Furthermore, we will introduce a noise-resistant technique for determining image gradients. Various experiments on simulated and real-world images show that our approach outperforms several existing methods, especially when the images vary in lightness or are corrupted by noise.
본 논문은 컬러 채널 상관관계를 고려한 에지 방향성 컬러 디모자이킹 방법을 제안한다. 제안하는 방법은 영역 분류 과정과 에지 방향성 컬러 보간 과정으로 이루어진다. 영역 분류 과정에서 채널 내 기울기와 채널 간 기울기값을 사용하여 주어진 Bayer 영상을 일반 에지, 패턴 에지, 평탄 영역으로 분류한다. 이때 일반 에지 판정 과정에서 두 개의 에지 방향 판정 기준을 사용하고, 패턴 에지 판정 과정에서 판정된 에지 방향에 대한 검증과정을 적용하여 에지 방향 추정 오류를 줄이도록 하였다. 보간 과정에서는 영역 분류과정에서 판단된 에지 방향에 따라 보간을 수행한다. 특히, 각 에지 방향에 대한 보간 성능을 향상시키기 위해 수평, 수직 방향 보간값은 채널 내 상관관계에 기반을 둔 컬러 보간식과 채널 간 상관관계에 기반을 둔 컬러 보간식을 영역 적응적으로 융합하여 구하였다. 실험결과를 통해 제안하는 방법이 기존 방법에 비해 수치적인 면과 시각적인 면에서 뛰어난 결과를 보임을 확인 할 수 있다.
본 논문에서는 경계 중요도 맵과 영역 병합에 의한 영상 분할 방법을 제안한다. 경계 중요도 맵은 텍스쳐 경계 강도와 칼라 경계 강도의 조합에 의해 생성한다. 텍스쳐 경계 강도는 가버 필터 뱅크를 사용하여 다중 스케일과 방향에 따른 필터링 결과를 병합하여 생성하며 칼라 경계 강도는 HSI 칼라 모델의 H 성분에 대해 계산한다. 경계 중요 맵 영상에 대해서는 Watershed 변환을 통해 사전 영상 분할을 수행한다. Watershed 변환에 의한 영상 분할은 영역들이 과잉 분할되는 현상이 나타나므로 이를 개선하여 최종 영상 분할 결과를 생성한다. 이를 위해 우선 모폴로지 연산을 사용하여 경계 중요도 맵 영상에 대한 컨트라스트 향상과 마커 영역을 생성한다. 모폴로지 연산으로 과잉 분할 영역은 줄어들지만 여전히 상당수 존재하게 되므로 이를 극복하기 위해 영역 병합 과정을 수행한다. 영역 병합 단계에서는 영역 내부의 평균 칼라 및 가버 텍스쳐 벡터를 함께 사용함으로써 효과적으로 과잉 분할된 영역을 병합할 수 있도록 하였다. 제안한 방법은 다양한 자연 영상에 대해 실험하였으며 기존 방법과 결과를 비교하여 성능의 우수성을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.