• Title/Summary/Keyword: Color Calibration

Search Result 209, Processing Time 0.03 seconds

The comparative study of PKNU2 Image and Aerial photo & satellite image

  • Lee, Chang-Hun;Choi, Chul-Uong;Kim, Ho-Yong;Jung, Hei-Chul
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.453-454
    • /
    • 2003
  • Most research materials (data), which are used for the study of digital mapping and digital elevation model (DEM) in the field of Remote Sensing and Aerial Photogrammetry are aerial photographs and satellite images. Additionally, they are also used for National land mapping, National land management, environment management, military purposes, resource exploration and Earth surface analysis etc. Although aerial photographs have high resolution, the data, which they contain, are not used for environment exploration that requires continuous observation because of problems caused by its coastline, as well as single - spectral and long-term periodic image. In addition to this, they are difficult to interpret precisely because Satellite Images are influenced by atmospheric phenomena at the time of photographing, and have by far much lower resolution than existing aerial photographs, while they have a great practical usability because they are mulitispectral images. The PKNU 2 is an aerial photographing system that is made to compensate with the weak points of existing aerial photograph and satellite images. It is able to take pictures of very high resolution using a color digital camera with 6 million pixels and a color infrared camera, and can take perpendicular photographs because PKNU 2 system has equipment that makes the cameras stay level. Moreover, it is very cheap to take pictures by using super light aircraft as a platform. It has much higher resolution than exiting aerial photographs and satellite images because it flies at a low altitude about 800m. The PKNU 2 can obtain multispectral images of visible to near infrared band so that it is good to manage environment and to make a classified diagram of vegetation.

  • PDF

Dyeability of Nylon Fabrics with Dyestuff for Supercritical Fluid Dyeing (1) : C.I. Disperse Red 167, C.I. Disperse Violet 93 (초임계 유체 염색용 염료에 따른 Nylon 섬유의 염색 특성 (1) : C.I. Disperse Red 167, C.I. Disperse Violet 93 Azo계 염료)

  • Choi, Hyunseuk;Park, Shin;Kim, Taeyoung
    • Textile Coloration and Finishing
    • /
    • v.32 no.4
    • /
    • pp.217-225
    • /
    • 2020
  • In this study, the dyeing characteristics of nylon fabric which is dyed with supercritical fluid were investigated. There were two dyes used in the dyeing experiment: C.I. Disperse Red 167 and C.I. Disperse Violet 93. Dyeing temperature, pressure, and leveling time were fixed at 110℃, 250bar, 60minutes, and the experiment was conducted with dyeing concentration of 0.1, 0.3, 0.5, and 0.85% o.w.f. The analysis of the experimental results was found out through the measurement of washing fastness and color coordinate. In addition, the calibration curve of each dye was drawn up and the amount of remaining dye was checked by measuring the absorbance of the residual dye. As a result of color difference measurement, as the concentration increased, the L⁎ value decreased and the K/S value increased. However, the increase in K/S value compared to the amount of input decreased as the concentration increased. The comparative experiment on the amount of residual dye(C.I. Disperse Red 167) in the pot showed that 99.14% of the amount was dyed at the concentration of 0.1% o.w.f, while it rapidly decreased to 77% at 0.85% o.w.f. C.I. Disperse Violet 93 dye also decreased from 0.5% o.w.f to 93.91%. In the washing fastness experiment of both dyes, the level of washing fastness began to decrease from samples dyed at 0.5% o.w.f. It may be because the simply absorbed dye was produced instead of completely being fixed in the amorphous region of the nylon fiber.

Design of a Mapping Framework on Image Correction and Point Cloud Data for Spatial Reconstruction of Digital Twin with an Autonomous Surface Vehicle (무인수상선의 디지털 트윈 공간 재구성을 위한 이미지 보정 및 점군데이터 간의 매핑 프레임워크 설계)

  • Suhyeon Heo;Minju Kang;Jinwoo Choi;Jeonghong Park
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.61 no.3
    • /
    • pp.143-151
    • /
    • 2024
  • In this study, we present a mapping framework for 3D spatial reconstruction of digital twin model using navigation and perception sensors mounted on an Autonomous Surface Vehicle (ASV). For improving the level of realism of digital twin models, 3D spatial information should be reconstructed as a digitalized spatial model and integrated with the components and system models of the ASV. In particular, for the 3D spatial reconstruction, color and 3D point cloud data which acquired from a camera and a LiDAR sensors corresponding to the navigation information at the specific time are required to map without minimizing the noise. To ensure clear and accurate reconstruction of the acquired data in the proposed mapping framework, a image preprocessing was designed to enhance the brightness of low-light images, and a preprocessing for 3D point cloud data was included to filter out unnecessary data. Subsequently, a point matching process between consecutive 3D point cloud data was conducted using the Generalized Iterative Closest Point (G-ICP) approach, and the color information was mapped with the matched 3D point cloud data. The feasibility of the proposed mapping framework was validated through a field data set acquired from field experiments in a inland water environment, and its results were described.

Development of Real-Time Internal Quality Evaluation Technique for Korean Red Ginseng using NIR Spectroscopy

  • Son, J.R.;Kim, G.;Kang, S.;Lee, K.J.
    • Agricultural and Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.8-12
    • /
    • 2006
  • This study was conducted to develop a real-time internal quality evaluation technique for Korean red ginseng using NIR spectroscopy while they were moving to be graded. Internal qualities of Korean red ginseng were defined by color, amount of white core and cavity in the red ginseng. To evaluate the internal quality, PLS (Partial Least Square) model was developed. Spectrum saturation can be occurred when most red ginseng has a sound internal quality expressed by higher light transmittance ratio, but that could not found in the ginseng of internal white core under the same light situation. And, if spectrum saturation is obtained, it is hard to identify the exact information of internal quality. In order to evaluate of the internal quality regardless of having internal normal core or white core, an integral time controlled method was used to obtain traditional spectrum. This procedure was applied in real-time process when red ginseng was moving to be graded in the line. Among the 450 samples including 223 internal normal ginsengs and 227 internal white core ginsengs, 315 ginsengs (70%) were used to develop a calibration model and 135 ginsengs were spent to validate the model. The result of quality evaluation by the model was very good showing SEP and bias were 0.3573 and 0.0310, respectively, and the accuracy was 95.6%.

  • PDF

A Miniature Humanoid Robot That Can Play Soccor

  • Lim, Seon-Ho;Cho, Jeong-San;Sung, Young-Whee;Yi, Soo-Yeong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.628-632
    • /
    • 2003
  • An intelligent miniature humanoid robot system is designed and implemented as a platform for researching walking algorithm. The robot system consists of a mechanical robot body, a control system, a sensor system, and a human interface system. The robot has 6 dofs per leg, 3 dofs per arm, and 2 dofs for a neck, so it has total of 20 dofs to have dexterous motion capability. For the control system, a supervisory controller runs on a remote host computer to plan high level robot actions based on the vision sensor data, a main controller implemented with a DSP chip generates walking trajectories for the robot to perform the commanded action, and an auxiliary controller implemented with an FPGA chip controls 20 actuators. The robot has three types of sensors. A two-axis acceleration sensor and eight force sensing resistors for acquiring information on walking status of the robot, and a color CCD camera for acquiring information on the surroundings. As an example of an intelligent robot action, some experiments on playing soccer are performed.

  • PDF

Radiometric Characteristics of Geostationary Ocean Color Imager (GOCI) for Land Applications

  • Lee, Kyu-Sung;Park, Sung-Min;Kim, Sun-Hwa;Lee, Hwa-Seon;Shin, Jung-Il
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.3
    • /
    • pp.277-285
    • /
    • 2012
  • The GOCI imagery can be an effective alternative to monitor short-term changes over terrestrial environments. This study aimed to assess the radiometric characteristics of the GOCI multispectral imagery for land applications. As an initial approach, we compared GOCI at-sensor radiance with MODIS data obtained simultaneously. Dynamic range of GOCI radiance was larger than MODIS over land area. Further, the at-sensor radiance over various land surface targets were tested by vicarious calibration. Surface reflectance were directly measured in field using a portable spectrometer and indirectly derived from the atmospherically corrected MODIS product over relatively homogeneous sites of desert, tidal flat, bare soil, and fallow crop fields. The GOCI radiance values were then simulated by radiative transfer model (6S). In overall, simulated radiance were very similar to the actual radiance extracted from GOCI data. Normalized difference vegetation index (NDVI) calculated from the GOCI bands 5 and 8 shows very close relationship with MODIS NDVI. In this study, the GOCI imagery has shown appropriate radiometric quality to be used for various land applications. Further works are needed to derive surface reflectance over land area after atmospheric correction.

Quantitative In-line NIR measurements of papers

  • Schmidt, Angela;Weiler, Helmut
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1285-1285
    • /
    • 2001
  • For NIR measurements of papers normally diffuse reflectance accessories are used which can provide a large sampling area. The in-line process control FT-NIR spectrometer MATRIX-E enables the contactless measurement of paper samples of low silicone coat weights on label-stocks in a paper converting factory. For this study concentrations of silicone between 0 and 2 g/$m^2$ on various paper substrates were included in a quantitative method. The aim was to achieve an absolute value for the deviation from the target value of 1 g/$m^2$ during continuous movement of the paper with velocities around 400 numinute. Influences from the uncoated paper type due to supplier, color, opacity, area densities, pre-coating as well as different compounds of the agent silicone were investigated and it was found that all these papers can be represented in one PLS-model. Especially the fact that silicone as an element is present in clay coated papers is of no consequence to the measurements with MATRIX-E. Moreover during in-line installations the variation of the moisture contents in the moving paper due to variable machine velocities as well as the reflecting material of the cylinder have to be considered. It is shown that the result of the in-line calibration has the same prediction ability compared to lab scale results(Root Mean Square Error of Cross-Validation RMSECV = 0.034 g/$m^2$).

  • PDF

QUANTITATIVE IN-LINE NIR MEASUREMENTS OF PAPERS

  • Schmidt, Angela;Weiler, Helmut
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1193-1193
    • /
    • 2001
  • For NIR measurements of papers normally diffuse reflectance accessories are used which can provide a large sampling area. The in-line process control FT-NIR spectrometer MATRIX-E enables the contactless measurement of paper samples of low silicone coat weights on label-stocks in a paper converting factory. For this study concentrations of silicone between 0 and 2 g/㎡ on various paper substrates were included in a quantitative method. The aim was to achieve an absolute value for the deviation from the target value of 1 g/㎡ during continuous movement of the paper with velocities around 400 m/minute. Influences from the uncoated paper type due to supplier, color, opacity, area densities, pre-coating as well as different compounds of the agent silicone were investigated and it was found that all these papers can be represented in one PLS-model. Especially the fact that silicone as an element is present in clay coated papers is of no consequence to the measurements with MATRIX-E. Moreover during in-line installations the variation of the moisture contents in the moving paper due to variable machine velocities as well as the reflecting material of the cylinder have to be considered. It is shown that the result of the in-line calibration has the same prediction ability compared to lab scale results (Root Mean Square Error of Cross-Validation RMSECV = 0.034 g/㎡).

  • PDF

A Study on the Measurement of Temperature and Soot in a Visualized D.I Diesel Engine Using the Laser Diagnostics (광계측 기법을 이용한 직분식 디젤 가시화 엔진내의 온도 및 매연 측정에 관한 연구)

  • Han, Yong-Taek;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.5
    • /
    • pp.38-47
    • /
    • 2007
  • Based upon temperature calibration using the diffusion flame, the temperature and soot concentration of the turbulent flame in a visualized Diesel engine's turbulent flow of flame was qualitatively measured. Two different heads were used to judge the effect of swirl ratio within the combustion chamber. It was possible to measure the highest temperature of the non-swirl head visualized engine which is approximately 2400K, and that the swirl head engine managed up to 2100K. Also, the more the pressure of the spray increases the more the temperature increases due to the improved combustion situation with respect to the visualized diesel engine soot. This experiment also revealed that the KL factor was high where the fuel collided with the walls of the combustion chamber. Moreover the KL factor was high on parts of the chamber where the temperature dropped rapidly.

Spatial augmented reality for product appearance design evaluation

  • Park, Min Ki;Lim, Kyu Je;Seo, Myoung Kook;Jung, Soon Jong;Lee, Kwan H.
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.1
    • /
    • pp.38-46
    • /
    • 2015
  • Augmented reality based on projection, called "Spatial Augmented Reality (SAR)", is a new technology that can produce immersive contents by overlapping virtuality and real-world environment. It has been paid attention as the next generation digital contents in media art and human-computer interaction (HCI). In this paper, we present a new methodology to evaluate the product appearance design more intuitively by means of SAR technique. The proposed method first projects the high-quality rendered image considering the optical property of materials onto the mock-up of a product. We also conduct a projector-camera calibration to compensate a color distortion according to a projector, a projection surface and environment lighting. The design evaluation methodology we propose offers more flexible and intuitive evaluation environment to a designer and user (evaluator) than previous methods that are performed via a digital display. At the end of this research, we have conducted a case study for designing and evaluating appearance design of an automobile.