• Title/Summary/Keyword: Colony formation capacity

Search Result 23, Processing Time 0.02 seconds

Advanced tube formation assay using human endothelial colony forming cells for in vitro evaluation of angiogenesis

  • Lee, Hyunsook;Kang, Kyu-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.6
    • /
    • pp.705-712
    • /
    • 2018
  • The tube formation assay is a widely used in vitro experiment model to evaluate angiogenic properties by measuring the formation of tubular structures from vascular endothelial cells (ECs). In vitro experimental results are crucial when considered the advisability of moving forward to in vivo studies. Thus, the additional attentions to the in vitro assay is necessary to improve the quality of the pre-clinical data, leading to better decision-making for successful drug discovery. In this study, we improved the tube formation assay system in three aspects. First, we used human endothelial colony forming cells (ECFCs), which are endothelial precursors that have a robust proliferative capacity and more defined angiogenic characteristics compared to mature ECs. Second, we utilized a real-time cell recorder to track the progression of tube formation for 48 hours. Third, to minimize analysis error due to the limited observation area, we used image-stitching software to increase the microscope field of view to a $2{\times}2$ stitched area from the $4{\times}$ object lens. Our advanced tube formation assay system successfully demonstrated the time-dependent dynamic progression of tube formation in the presence and absence of VEGF and FGF-2. Vatalanib, VEGF inhibitor, was tested by our assay system. Of note, $IC_{50}$ values of vatalanib was different at each observation time point. Collectively, these results indicate that our advanced tube formation assay system replicates the dynamic progression of tube formation in response to angiogenic modulators. Therefore, this new system provides a sensitive and versatile assay model for evaluating pro- or anti-angiogenic drugs.

Effect of gacS and gacA Mutations on Colony Architecture, Surface Motility, Biofilm Formation and Chemical Toxicity in Pseudomonas sp. KL28

  • Choi, Kyung-Soon;Veeraragouda, Yaligara;Cho, Kyoung-Mi;Lee, Soo-O;Jo, Geuk-Rae;Cho, Kyung-Yun;Lee, Kyoung
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.492-498
    • /
    • 2007
  • GacS and GacA proteins form a two component signal transduction system in bacteria. Here, Tn5 transposon gacS and gacA (Gac) mutants of Pseudomonas sp. KL28, an alkylphenol degrader, were isolated by selecting for smooth colonies of strain KL28. The mutants exhibited reduced ability to migrate on a solid surface. This surface motility does not require the action of flagella unlike the well-studied swarming motility of other Pseudomonas sp. The Gac mutants also showed reduced levels of biofilm and pellicle formation in liquid culture. In addition, compared to the wild type KL28 strain, these mutants were more resistant to high concentrations of m-cresol but were more sensitive to $H_2O_2$, which are characteristics that they share with an rpoS mutant. These results indicate that the Gac regulatory cascade in strain KL28 positively controls wrinkling morphology, biofilm formation, surface translocation and $H_2O_2$ resistance, which are important traits for its capacity to survive in particular niches.

Enhanced antibacterial activity of tilmicosin against Staphylococcus aureus small colony variants by chitosan oligosaccharide-sodium carboxymethyl cellulose composite nanogels

  • Luo, Wanhe;Liu, Jinhuan;Zhang, Shanling;Song, Wei;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.1.1-1.11
    • /
    • 2022
  • Background: The poor bioadhesion capacity of tilmicosin resulting in treatment failure for Staphylococcus aureus small colony variants (SASCVs) mastitis. Objectives: This study aimed to increase the bioadhesion capacity of tilmicosin for the SASCVs strain and improve the antibacterial effect of tilmicosin against cow mastitis caused by the SASCVs strain. Methods: Tilmicosin-loaded chitosan oligosaccharide (COS)-sodium carboxymethyl cellulose (CMC) composite nanogels were formulated by an electrostatic interaction between COS (positive charge) and CMC (negative charge) using sodium tripolyphosphate (TPP) (ionic crosslinkers). The formation mechanism, structural characteristics, bioadhesion, and antibacterial activity of tilmicosin composite nanogels were studied systematically. Results: The optimized formulation was comprised of 50 mg/mL (COS), 32 mg/mL (CMC), and 0.25 mg/mL (TPP). The size, encapsulation efficiency, loading capacity, polydispersity index, and zeta potential of the optimized tilmicosin composite nanogels were 357.4 ± 2.6 nm, 65.4 ± 0.4%, 21.9 ± 0.4%, 0.11 ± 0.01, and -37.1 ± 0.4 mV, respectively; the sedimentation rate was one. Scanning electron microscopy showed that tilmicosin might be incorporated in nano-sized crosslinked polymeric networks. Moreover, adhesive studies suggested that tilmicosin composite nanogels could enhance the bioadhesion capacity of tilmicosin for the SASCVs strain. The inhibition zone of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels were 2.13 ± 0.07, 3.35 ± 0.11, and 1.46 ± 0.04 cm, respectively. The minimum inhibitory concentration of native tilmicosin, tilmicosin standard, and tilmicosin composite nanogels against the SASCVs strain were 2, 1, and 1 ㎍/mL, respectively. The in vitro time-killing curves showed that the tilmicosin composite nanogels increased the antibacterial activity against the SASCVs strain. Conclusions: This study provides a potential strategy for developing tilmicosin composite nanogels to treat cow mastitis caused by the SASCVs strain.

Comparison of Efficiency of Self-renewal and Differentiation Potential in Tendon-derived Mesenchymal Stem Cells Isolated by Magnetic-activated Cell Sorting Method or Colony Picking Method (자기 활성 세포 분리법과 군체 분리법으로 분리된 건 줄기세포의 자가 재생 능력 및 분화능 효율 비교)

  • Lee, Moses;Choi, Yoorim;Yoon, Dong Suk;Lee, Jin Woo;Yoon, Gil Sung;Choi, Woo Jin;Han, Seung Hwan
    • Journal of Korean Foot and Ankle Society
    • /
    • v.18 no.3
    • /
    • pp.100-107
    • /
    • 2014
  • Purpose: The purpose of this study is to evaluate the efficacy of mesenchymal stem cell (MSC) isolation by the magnetic-activated cell sorting (MACS) method in tendon tissue-derived cells compared to the colony picking method for isolation of MSCs by picking colony-forming cells. Materials and Methods: Human tendon-derived cells were isolated by enzyme digestion using normal tendon tissues from three donors. We used the magnetic kit and well-known MSC markers (CD90 or CD105) to isolate MSCs in tendon-derived cells using MACS. Cloning cylinders were used to isolate colony-forming cells having MSC characteristics in tendon-derived cells. Colony-forming unit-fibroblast (CFU-F) assay was used to evaluate the self-renewal capacity of cells isolated using the colony picking method or MACS. For comparison of differentiation potentials into osteogenic or adipogenic lineage between two groups, alizarin red S and oil red O staining were performed at 14 days after induction of differentiation in vitro. Results: Flow cytometry results showed that early passage tendon-derived cells expressed CD44 in 99.13%, CD90 in 56.51%, and CD105 in 86.19%. In the CFU-F assay, CD90+ or CD105+ cells isolated with MACS showed larger colony formation in size than cells isolated using the colony picking method. We also observed that CD90+ or CD105+ cells were constantly differentiated into both osteogenic and adipogenic lineages in cells from all donors, whereas cells isolated using the colony picking method were heterogeneous in differentiation potentials to the osteogenic and adipogenic lineages. Conclusion: CD90+ or CD105+ cells isolated using MACS showed superior MSC characteristics in the self-renewal and multi-differentiation capacities compared with cells isolated using the colony picking method.

Antibacterial activity of enrofloxacin loaded gelatin-sodium alginate composite nanogels against intracellular Staphylococcus aureus small colony variants

  • Luo, Wanhe;Liu, Jinhuan;Algharib, Samah Attia;Chen, Wei
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.48.1-48.12
    • /
    • 2022
  • Background: The poor intracellular concentration of enrofloxacin might lead to treatment failure of cow mastitis caused by Staphylococcus aureus small colony variants (SASCVs). Objectives: In this study, enrofloxacin composite nanogels were developed to increase the intracellular therapeutic drug concentrations and enhance the efficacy of enrofloxacin against cow mastitis caused by intracellular SASCVs. Methods: Enrofloxacin composite nanogels were formulated by an electrostatic interaction between gelatin (positive charge) and sodium alginate (SA; negative charge) with the help of CaCl2 (ionic crosslinkers) and optimized by a single factor test using the particle diameter, zeta potential (ZP), polydispersity index (PDI), loading capacity (LC), and encapsulation efficiency (EE) as indexes. The formation mechanism, structural characteristics, bioadhesion ability, cellular uptake, and the antibacterial activity of the enrofloxacin composite nanogels against intracellular SASCVs strain were studied systematically. Results: The optimized formulation was comprised of 10 mg/mL (gelatin), 5 mg/mL (SA), and 0.25 mg/mL (CaCl2). The size, LC, EE, PDI, and ZP of the optimized enrofloxacin composite nanogels were 323.2 ± 4.3 nm, 15.4% ± 0.2%, 69.6% ± 1.3%, 0.11 ± 0.02, and -34.4 ± 0.8 mV, respectively. Transmission electron microscopy showed that the enrofloxacin composite nanogels were spherical with a smooth surface and good particle size distributions. In addition, the enrofloxacin composite nanogels could enhance the bioadhesion capacity of enrofloxacin for the SASCVs strain by adhesive studies. The minimum inhibitory concentration, minimum bactericidal concentration, minimum biofilm inhibitory concentration, and minimum biofilm eradication concentration were 2, 4, 4, and 8 ㎍/mL, respectively. The killing rate curve had a concentration-dependent bactericidal effect as increasing drug concentrations induced swifter and more radical killing effects. Conclusions: This study provides a good tendency for developing enrofloxacin composite nanogels for treating cow mastitis caused by intracellular SASCVs and other intracellular bacterial infections.

Inhibition of growth and biofilm formation of Staphylococcus aureus by corosolic acid (Corosolic acid에 의한 Staphylococcus aureus의 생장 및 생물막 형성 저해)

  • Yum, Su-Jin;Kim, Seung Min;Yu, Yeon-Cheol;Jeong, Hee Gon
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.146-150
    • /
    • 2017
  • Staphylococcus aureus is a pathogenic bacterium that causes food poisoning, exhibits a strong capacity to form biofilm, and is highly resistant to antimicrobial agents. The purpose of this study was to investigate the antimicrobial characteristics of corosolic acid against S. aureus. S. aureus showed high susceptibility to corosolic acid in a concentration-dependent manner. The minimum inhibitory concentration and colony-forming ability determined by the broth microdilution method showed that corosolic acid had strong antimicrobial activity against the bacteria. The diameters of the inhibition zone and numbers of colony forming units at each concentration of corosolic acid were also measured. In addition, corosolic acid displayed potent biofilm inhibition activity against S. aureus at concentrations below its minimum inhibitory concentration. These results suggest that corosolic acid can be used to effectively prevent biofilm formation by S. aureus, thereby making S. aureus more susceptible to the action of antimicrobials.

Antimicrobial activity and cytotoxicity test of Scrophularia ningpoensis hemsl extracts against Klebsiella pneumoniae

  • Yook, Keun-Dol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.135-139
    • /
    • 2016
  • Scrophularia ningpoensis hemsl has been traditionally used in China and Vietnam for treatment of bacteria, atopy, pimple, tonsillitis, angina and encephalitis for a long time. The main objectives of this study were to evaluate the antibacterial activity of the Scrophularia ningpoensis hemsl extract on biofilm formation of Klebsiella pneumoniae. Antibacterial activity was conducted using disc diffusion assay and minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were determined using the broth micro dilution method in accordance to Clinical and Laboratory Standards Institute guidelines(CLSI). Furthermore, cytotoxicity on L929 were assessed using animal cell culture for the proliferation test(MTT cell assay) and the biofilm forming capacity of the K. pneumoniae were determined using the colony forming unit (CFU) assay. The extract exhibited considerable antibacterial activity. K. pneumoniae was susceptible to the extract with the MIC and MBC of 0.1875 and $1.5mg/m{\ell}$ respectively. Cytoxicity test in L929 showed no sign of toxicity at the concentration of $0.75mg/m{\ell}$ and at the same concentration the extract caused inhibition of bacterial biofilm formation. The extract of Scrophularia ningpoensis hemsl possesses an in vitro antibacterial antibiofilm activities against K. pneumoniae, with no sign of cytoxicity on L929.

Forced Expression of HoxB4 Enhances Hematopoietic Differentiation by Human Embryonic Stem Cells

  • Lee, Gab Sang;Kim, Byung Soo;Sheih, Jae-hung;Moore, Malcolm AS
    • Molecules and Cells
    • /
    • v.25 no.4
    • /
    • pp.487-493
    • /
    • 2008
  • HoxB4 has been shown to enhance hematopoietic engraftment by hematopoietic stem cells (HSC) from differentiating mouse embryonic stem cell (mESC) cultures. Here we examined the effect of ectopic expression of HoxB4 in differentiated human embryonic stem cells (hESCs). Stable HoxB4-expressing hESCs were established by lentiviral transduction, and the forced expression of HoxB4 did not affect stem cell features. HoxB4-expressing hESC-derived CD34+ cells generated higher numbers of erythroid and blast-like colonies than controls. The number of CD34+ cells increased but CD45+ and KDR+ cell numbers were not significantly affected. When the hESC derived CD34+ cells were transplanted into $NOD/SCID{\beta}2m-/-$ mice, the ectopic expression of HoxB4 did not alter their repopulating capacity. Our findings show that overexpression of HoxB4 in differentiating hESCs increases hematopoietic colony formation and hematopoietic cell formation in vitro, but does not affect in vivo repopulation in adult mice hosts.

Developmental Competence of Intrafollicular Oocytes Derived from Preantral Follicle Culture with Different Protocols after Parthenogenetic Activation

  • Choi, Jung Kyu;Lee, Jae Hee;Lee, Seung Tae;Choi, Mun Hwan;Gong, Seung Pyo;Lee, Eun Ju;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1190-1195
    • /
    • 2007
  • This study was conducted to improve efficiency of a follicle culture system without reducing developmental competence of intrafollicular oocytes. Preantral follicles (100 to $125{\mu}m$ in diameter) of F1 hybrid (B6CBAF1) mice were cultured singly for 216 h in modified ${\alpha}$-MEM-glutamax medium, to which 2.5 IU/ml hCG and epidermal growth factor was added 16 h prior to the end of culture. Medium change was either performed three times (54 h interval), twice (72 h interval), once (108 h interval), or not at all (216 h interval). Maturation (progression to the metaphase II stage) of intrafollicular oocytes was detected from 4 days after culture in the three-times change treatment, while all treatments yielded mature oocytes from day 5 of culture. Compared with the three-times change, decreasing the change frequency to once did not reduce the capacity to begin maturation (germinal vesicle breakdown of 82 to 86%), to mature (78 to 79%) and to develop into blastocysts after parthenogenetic activation (29 to 32%). Morphological parameters were similar among these treatments. Except for the no medium change treatment, similar colony-forming activity of inner cell mass cells after culturing of blastocysts in leukemia inhibitory factor-containing medium was detected, while the morphology of the colony-forming cells deteriorated in the change-once treatment compared with the change twice or three-times. In conclusion, the efficiency of the preantral follicle culture system could be improved by reducing frequency of medium change up to a 72 h interval (three times in total 216 h culture) without decreasing developmental competence of oocytes.