• Title/Summary/Keyword: Colonic fermentation

Search Result 16, Processing Time 0.021 seconds

Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice

  • Yoon-Jung Shin;Dong-Yun Lee;Joo Yun Kim;Keon Heo;Jae-Jung Shim;Jung-Lyoul Lee;Dong-Hyun Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.255-264
    • /
    • 2023
  • Background: Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods: Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results: Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion: Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.

Health Benefits of Probiotic Bifidobacteria and Their Industrial Application (Probiotic bifidobacteria의 건강 증진 작용과 산업적 이용)

  • Lim, Gwang-Se
    • Journal of Dairy Science and Biotechnology
    • /
    • v.21 no.2
    • /
    • pp.125-137
    • /
    • 2003
  • Bifidobacteria are normal inhabitants of the human gastrointestinal tract throughout lift, starting just days after birth, and are one of several predominant species of the colonic microflora, along with Peptostreptococcus, Eubacteria, Clostridia, and Bacteroides. Bifidobacteria differ from lactic acid bacteria in that they produce not only lactic acid but also acetic acid as major fermentation products. The classification of bifidobacteria has changed numerous times since they were discovered in 1899 in the feces of breast-fed infants. Since 1994, three additional species have been included in the list (B. lactis, B. inopinatum, and B. denticolens), with a current total of 32 species. A variety of probiotic effects of bifidobacteria are currently being investigated. Research reports suggests several potential probiotic advantages, in particular antimicrobial effects, immune-modulation reduction of the cancer risk, and modulation of gastrointestinal flora. As technological challenges related to viability and enumeration are being overcome, milks fermented with these anaerobic microorganisms(alone or in combination with lactic acid bacteria) are more able to provide consistently satisfying with large numbers of viable microorganisms. Over 70 products containing bifidobacteria are currently offered around the world, including fermented milks, cheese, buttermilk frozen desserts, candy, and pharmaceutical preparations.

  • PDF

Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

  • Jung, Tae-Hwan;Park, Jeong Hyeon;Jeon, Woo-Min;Han, Kyoung-Sik
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS: Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS: Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS: Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate potentially stimulates the MAPK signaling pathway in intestinal cells, which is positively correlated with gut defense.

Effects of Sodium Butyrate on the Biosynthesis of Sphingolipids in HT29, a Human Colon Cancer Cell Line (Sodium Butyrate 처리가 대장암 세포주인 HT29 Cell의 Sphingolipid 생합성에 미치는 영향)

  • 김희숙
    • Journal of Life Science
    • /
    • v.9 no.2
    • /
    • pp.160-168
    • /
    • 1999
  • Butyrate is one of the short-chain fatty acids that are present in the colon of mammals in millimolar concentration as a result of microbial anaerobic fermentation of dietary fiber, undigested starch, and proteins. In this study, sodium butyrate was examined in HT29 cell, human colonic cancer cell line, on cell viability, alkaline phosphatase activity, PLC-${\gamma}$1 expression and complex sphingolipid biosynthesis. Treatment with butyrate showed that the decrease of cell adhesion and viability was time-dependent. Sodium butyrate also induced to increase the activity of alkaline phosphatase which is a differentiation marker enzyme and decrease the expression of PLC-${\gamma}$1. Biosynthesis of sphingomyelin and galactosylceramide by butyrate treatment were decreased so fast but ceramide was increased 680dpm/mg protein% more than untreated group on first day and then decreased fast. In addition, acid ceramidase and neutral ceramidase activity were inhibited early stage by sodium butyrate. These results suggest that sodium butyrate causes cell differentiation or cell growth arrest of HT29 cell accompanied by early increase of ceramide content and alkaline phosphatase activity and decrease of galactosylceramide content and PLC-r1 expression.

  • PDF

Effects of Dietary DFA IV on Lumen Short Chain Fatty Acids Production and Intestinal Environment in Rats (식이 DFA IV의 흰쥐 장내 단쇄지방산 생성 및 장내환경 개선효과)

  • Hong, Kyung Hee;Jang, Ki-Hyo;Kang, Soon Ah
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.389-396
    • /
    • 2016
  • This study examined the improving effect of DFA IV obtained from bacterial fermentation on the gut health. The effects of the dietary DFA IV on the intestinal mass, short chain fatty acids production and pH were evaluated in vivo. Sprague-Dawley rats were fed the 0% (control) or 1% DFA IV supplemented diets for 3 weeks. Supplementation of DFA IV resulted in a significant increase in cecal tissue and wall weights. Together with the lowering of the cecal and colonic pH, the amount of acetate and butyrate increased by 1.6 and 3.2 fold of the control group in the cecum, respectively, in the rats fed DFA IV diets. The DFA IV diet also significantly increased the cecal lactate 1.5 fold compared to the control diet, indicating that dietary DFA IV stimulated the growth of lactic acid bacteria and bifidobacteria in the intestine. Based on the above results, it is concluded that the dietary DFA IV may be used as a putative prebiotic supplement.

Effect of Hormones and Short Chain Fatty Acids on CYP7A1 Gene Expression in HepG2 Cell (호르몬과 단쇄지방산이 HepG2 Cell 내에서 CYP7A1 발현에 미치는 효과)

  • Yang, Jeong-Lye;Lee, Hyun-Jung;Kim, Yang-Ha
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.573-580
    • /
    • 2005
  • Cholesterol $7\alpha-hydroxylase$ (CYP7A1) is the rate-limiting enzyme in the conversion of cholesterol to bile acids and plays a central role in regulating cholesterol homeostasis. We previously showed that a fermentable $\beta-glucan$ ingestion decreased plasma cholesterol levels due to fecal bile acid excretion elevation involved inincrease of cholesterol $7\alpha-hydroxylase$ mRNA expression and activity. It is proposed that short chain fatty acids (SCFA) produced by cecal and colonic fermentation of soluble fiber are associated with cholesterol-lowering effect of fiber. In the present study, we investigated whether CYP7A1 expression is up-regulated by short chain fatty acids or by hormones in cultured human hepatoma (HepG2) cells. Confluent HepG2 cell were incubated with acetate, propionate, or butyrate at 1 mM concentration for 24 hrs. Acetate as well as propionate increased to 1.8-fold expression of CYP7A1 mRNA than the control. Butyrate also increased 1.5-fold expression of CYP7A1 mRNA. Our data show for the first time that SCFA increase expression of CYP7A1 mRNA. Adding insulin, dexamethasone and triiodothyronine $(1\;{\mu}M)$ to HepG2 cell increased the expression of CYP7A1 mRNA to $150\%,\;173\%,\;141\%$, respectively. These results suggest that SCFA produced by cecal fermentation stimulate enteric nervous system, in which secreted some neuropeptides may be responsible for change in cholesterol and bile acid metabolism. These findings suggest that SCFA are involved in lowering plasma cholesterol levels due to the up-regulation of CYP7A1 and bile acid synthesis.