• Title/Summary/Keyword: Colloidal solution

Search Result 234, Processing Time 0.042 seconds

Improvement of Light-Harvesting Efficiency of TiO2 Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution

  • Lim, Mi Ja;Song, Shin Ae;Kang, Yun Chan;So, Won-Wook;Jung, Kyeong Youl
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.632-637
    • /
    • 2015
  • Mesoporous $TiO_2$ granules were prepared by spray pyrolysis using nano-sized titania particles which were synthesized by a hydrothermal method, and they were evaluated as the photoanode of dye-sensitized solar cells. To enhance the cell efficiency, nanoparticles within granules were chemically interconnected by adding titanium ethoxide (TEOT) to colloidal spray solution. The resulting titania particles had anatase phase without forming rutile. $TiO_2$ granules obtained showed about 400 nm in size, the specific surface area of $74-77m^2/g$, and average pore size of 13-17 nm. The chemical modification of $TiO_2$ granules by adding TEOT initially to the colloidal spray solution was proved to be an effective way in terms of increasing both the light scattering within photoanode and the lifetimes of photo-excited electrons. Consequently, the light-harvesting efficiency of TEOT-modified granules (${\eta}=6.72%$) was enhanced about 14% higher than primitive nanoparticles.

Preperation of CuInSe2 Nanoparticles by Solution Process Using Precyrsors

  • Choe, Ha-Na;Lee, Seon-Suk;Jeong, Taek-Mo;Kim, Chang-Gyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.376-376
    • /
    • 2011
  • I-III-VI2 chalcopyrite compounds, particularly copper, indium, gallium selenide(Cu(InxGa1-x)Se2, CIGS), are effective light-absorbing materials in thin-film solar application. They are direct band-gap semiconductors with correspondingly high optical absorption coefficients. Also they are stable under long-term excitation. CIS (CIGS) solar cell reached conversion efficiencies as high as 19.5%. Several methods to prepare CIS (CIGS) absorber films have been reported, such as co-evaporation, sputtering, selenization, and electrodeposition. Until now, co-evaporation is the most successful technique for the preparation of CIS (CIGS) in terms of solar efficiency, but it seems difficult to scale up. CIS solar cells have been hindered by high costs associated with a fabrication process. Therefore, inorganic colloidal ink suitable for a scalable coating process could be a key step in the development of low-cost solar cells. Here, we will present the preparation of CIS photo absorption layer by a solution process using novel metal precursors. Chalcopyrite copper indium diselenide (CuInSe2) nanocrystals ranging from 5 to 20nm in diameter were synthesized by arrested precipitation in solution. For the fabrication of CIS photo absorption layer, the CuInSe2 colloidal ink was prepared by dispersing in organic solvent and used to drop-casting on molybdenum substrate. We have characterized the nanoparticless and CIS layer by XRD, SEM, TEM, and ICP.

  • PDF

Preparation of Hard Coating Solutions using Colloidal Silica and Glycidoxypropyl Trimethoxysilane by the Sol-Gel Method (Sol-Gel 법에 의해 Colloidal Silica와 Glycidoxypropyl Trimethoxysilane으로 부터 하드코팅 용액의 제조)

  • Kim, Dae Hyun;Song, Ki Chang;Chung, Jae Shik;Lee, Bum Suk
    • Korean Chemical Engineering Research
    • /
    • v.45 no.5
    • /
    • pp.442-447
    • /
    • 2007
  • In order to improve the surface hardness of transparent plastic films, organic-inorganic hybrid coating solutions were synthesized by the sol-gel method. The coating solutions were prepared by adding GPTMS (glycidoxypropyl trimethoxysilane) to a colloidal silica (12 nm) suspension. PC(polycarbonate) substrates were dipped into the coating solutions and dried at room temperature for 10 min before being cured at $80^{\circ}C$ for 30 min. The effect of the solution pH and GPTMS content was investigated on the properties of coating films. The pencil hardness and adhesion to substrates of the coating films, prepared at acidic condition (pH 4), showed better properties than those at neutral or basic conditions. Also, the pencil hardness and adhesion to substrates of the coating films increased with increasing GPTMS content.

Stability of concentrated Colloidal Liquid Aphrons containing a quaternary ammonium salt in the continuous phase (사차 암모늄 염을 함유하는 농축된 콜로이드 액상 에이프런의 연속상에서의 안정성)

  • Hahm, Hyung Chul;Hong, Won Hi;Lee, Choul Ho
    • Clean Technology
    • /
    • v.7 no.4
    • /
    • pp.291-297
    • /
    • 2001
  • In this study, the stability of concentrated colloidal liquid aphrons (CLAs) containing Aliquat 336 was measured. CLAs in the continuous phase are stabilized by water-soluble surfactant and oil-soluble surfactant. To compare the stability of CLAs, half-life was introduced. According to the change of state of solution, the rate of break-up of concentrated CLAs changed rigorously at critical coagulation concentration. Critical coagulation concentration was measured with changing pH. The effects of ionic strength and concentration of Sodium Dodecyl Benzene Sulfonate (SDBS) on the stability of concentrated CLAs in the continuous phase were also investigated.

  • PDF

Preparation of Functional Antibiotic and Deodorization Pigments Using Surface Modification Method for Special Papermaking

  • Cho, Jun-Hyung;Lee, Yong-Won;Min, Dong-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.417-421
    • /
    • 2006
  • In this study, colloidal Ag solution was spouted on the surface of the inorganic pigment using the hybridizer system and the spray nozzle. Then, the surface of the inorganic pigment was modified by titanium dioxide in order to possess antibacterial ability. Nano-sized colloidal Ag was made by using a seed sol method in this study. It was confirmed that the size of particle per unit weight becomes enlarged, as the addition of $AgNO_{3}$ increased, and as the time of reaction increased, in the manufacturing process of nano-sized colloidal Ag. The antibacterial measurement of the inorganic pigment showed that the growth of fungus was reduced as the reaction time increased. It was measured that the antibacterial activity was excellent at fixed time frame, after the antibacterial ability appeared in $5{\sim}7$ hours of the antibacterial inoculation experiment. The experiment of titanium dioxide's Photocatalyst effect showed $60{\sim}70%$ efficiency in about 80 minute reaction time of the dissolution results regarding measurements of benzene. It was shown that more than 90% of the dissolution efficiency was achieved in the reaction time of about 30 minute.

  • PDF

Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

  • Bai, Jie;Liu, Changsong;Niu, Jinzhong;Wang, Hongzhe;Xu, Shasha;Shen, Huaibin;Li, Lin Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.397-400
    • /
    • 2014
  • Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> $360^{\circ}C$). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S.