• Title/Summary/Keyword: Colloidal method

Search Result 231, Processing Time 0.025 seconds

The Effect of Porous Support and Intermediate Layer on the Silica-zirconia Membranes for Gas Permeation Performance (실리카-지르코니아 분리막 성능에 대한 다공성 지지체와 중간층의 영향)

  • Lee, Hye Ryeon;Seo, Bongkuk
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.15-26
    • /
    • 2015
  • In this study, porous metal (O.D. = 10 mm, length = 10 mm, 316 L SUS, Mott Corp.) and ${\alpha}$-alumina tube (O.D. = 10 mm, length = 50 mm, Pall, German) support was modified with suspension sols, which were consisted of $3{\sim}4{\mu}m$ and 150 nm size of ${\alpha}$-alumina particle in the water or silica-zirconia colloidal sol. The porous support was fabricated by dip coating method for 5 seconds with suspension of alumina particles. After drying at $100^{\circ}C$ for 1 h, it was calcined at $550^{\circ}C$ for 30 min. It was repeated several times in order to decrease big pore on support. The surface roughness and largest pore size on the porous support was decreased by increasing coating times with $3{\sim}4{\mu}m$ size of ${\alpha}$-alumina particle and alumina coating with 150 nm size of ${\alpha}$-alumina particle served as further smoothening the surface and decreasing the pore size of the substrate. And the silica-zirconia membranes were successfully prepared on the modified porous metal and ${\alpha}$-alumina supports, and showed hydrogen permeance in the range of $1.8-8.4{\times}10^{-4}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$ and $3.3-5.0{\times}10^{-5}mol{\cdot}m^{-2}{\cdot}s^{-1}{\cdot}Pa^{-1}$, respectively.

Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil (지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석)

  • Song, Young-Su;Lim, Heui-Dae;Choi, Dong-Nam
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.177-184
    • /
    • 2010
  • When cement grout is used for waterproofing of grounds, important roles are played by fluidity, particle size and bleeding. The most important element which determines their characteristics is the water/cement ratio of grout. Moreover in order to improve the efficiency of soil permeation, micro cement with a smaller average diameter is used in addition to ordinary portland cement. Besides the mixing ratio and cement diameter, the condition of ground is also of fundamental importance in the efficiency of permeation. In order to evaluate grout in terms of permeation ability into ground, we need a field test of grounting, which is cost and time consuming. In this paper we present a laboratory test method in which the suitability and efficiency of grouts are simply and more practically tested. In Korea neither a test standard nor devices are available to simulate grouting in a laboratory. We devised a grout injection equipment in which grouting was reproduced in the same condition with different materials, and suggested a standard for the production of specimens. Our tests revealed that the efficiency of injection increases with the water/cement ratio. We also found that more efficiently injected is the grout with the order of decreasing size; MS8000, micro cement, and ultra fine cements, and colloidal super cement.

The Evaluation for Characteristics of Titanium Dioxide Dispersion in Aqeous Medium by Zeta Potential (수계에서 제타전위를 이용한 이산화티탄의 분산특성에 대한 평가)

  • Lee, Kang-Yen;Park, Byung-Jun;Kim, Joong-Koo;Zhoh, Choon-Koo;Kim, Bong-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.2
    • /
    • pp.105-110
    • /
    • 2007
  • The stability of titanium dioxide dispersion was evaluated by zeta ($\zeta$) potential and we intended to apply it for improvement of dispersion stability. Both theories related to $\zeta$ potential (electric double layer, electrophoresis, isoelectric point and electroosmosis) and a method to measure $\zeta$ potential were explained in this study. The change in $\zeta$ potential of $TiO_2$ dispersion was measured by means of Henry's function of Helmholtz-Smoluchowski's equation (H-S equation). The $\zeta$ potentials of $TiO_2$ dispersion were negative in all measured pH values ($3.0{\sim}9.0$), and absolute values of $\zeta$ potentials of $TiO_2$ increased as pH values increased. $TiO_2$ dispersion was maintained in pH 8.0 and 9.0 respectively. From these results, we suggest that $\zeta$ potentials have an effect on $TiO_2$ dispersion and absolute value of $\zeta$ potentials played an important role in the stability of $TiO_2$ dispersion in aqeous medium.

Behaviour of Nanoemulsions Containing Ceramide IIIB and Stratum Corneum Lipids (세라마이드 IIIB와 각질층 지질을 함유한 나노에멀젼의 거동)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.44 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Oil/water (O/W) nanoemulsions are effective vehicles to change the permeability of the skin. In this study, we focused on the preparation and characterization of nanoemulsion which serve as colloidal carriers for the dermal application of ceramide IIIB (CIIIB) and stratum corneum (SC) lipids such as cholesterol, and palmitic acid. In order to optimize the nanoemulsions, emulsification process conditions were conducted with regard to droplet size, nanoemulsion stability, and solubility of CIIIB. A decrease in droplet size was observed through emulsification temperature of $80^{\circ}C$ and phase inversion composition (PIC) method. CIIIB has low solubility in oil and water. When the concentration of CIIIB was increased, the droplet size of nanoemulsion was increased. When Lipoid S75-3 was added to the oil phase, the solubility of CIIIB increased, indicating some interactions shown in DSC measurements. CIIIB and SC lipids could be successfully incorporated in nanoemulsions without crystallization or physical instability. In conclusion, a stable nanoemulsion containing the SC lipids could be effective as an efficient moisturizing system for skin.

Effect of Concentration and Surface Property of Silica Sol on the Determination of Particle Size and Electrophoretic Mobility by Light Scattering Method (광산란법에서 실리카 졸의 농도 및 표면특성이 입자 크기 및 전기영동 이동도 측정결과에 미치는 영향)

  • Cho, Gyeong Sook;Lee, Dong-Hyun;Kim, Dae Sung;Lim, Hyung Mi;Kim, Chong Youp;Lee, Seung-Ho
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.622-627
    • /
    • 2013
  • Colloidal silica is used in various industrial products such as chemical mechanical polishing slurry for planarization of silicon and sapphire wafer, organic-inorganic hybrid coatings, binder of investment casting, etc. An accurate determination of particle size and dispersion stability of silica sol is demanded because it has a strong influence on surface of wafer, film of coatings or bulks having mechanical, chemical and optical properties. The study herein is discussed on the effect of measurement results of average particle size, sol viscosity and electrophoretic mobility of particle according to the volume fraction of eight types of silica sol with different size and surface properties of silica particles which are presented by the manufacturer. The measured particle size and the mobility of these sol were changed by volume fraction or particle size due to highly active surface of silica particle and change of concentration of counter ion by dilution of silica sol. While in case the measured sizes of small particles less than 60 nm are increased with increasing volume fraction, the measured sizes of larger particles than 60 nm are slightly decreased. The mobility of small particle such as 12 nm are decreased with increase of viscosity. However, the mobility of 100 nm particles under 0.048 volume fraction are increased with increasing volume fraction and then decreased over higher volume fraction.

Biological Toxicities and Aggregation Effects of ʟ-Glycine and ʟ-Alanine Capped ZnS:Mn Nanocrystals in Aqueous Solution

  • Park, Sanghyun;Song, Byungkwan;Kong, Hoon Young;Byun, Jonghoe;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.4
    • /
    • pp.1169-1176
    • /
    • 2014
  • In this study, water-dispersible ZnS:Mn nanocrystals were synthesized by capping the surface with conventional and simple structured amino acid ligands: $\small{L}$-Glycine and $\small{L}$-Alanine. The ZnS:Mn-Gly and ZnS:Mn-Ala nanocrystal powders were characterized by XRD, HR-TEM, EDXS, ICP-AES, and FT-IR spectroscopy. The optical properties were measured by UV-Visible and photoluminescence (PL) spectroscopy. The PL spectra for the ZnS:Mn-Gly and ZnS:Mn-Ala showed broad emission peaks at 599 nm and 607 nm with PL efficiencies of 6.5% and 7.8%, respectively. The measured average particle size from the HR-TEM images were $6.4{\pm}0.8$ nm (ZnS:Mn-Gly) and $4.1{\pm}0.5$ nm (ZnS:Mn-Ala), which were also supported by Debye-Scherrer calculations. In addition, the degree of aggregation of the nanocrystals in aqueous solutions were measured by a hydrodynamic light scattering method, which showed formation of sub-micrometer size aggregates for both ZnS:Mn-Gly ($273{\pm}94$ nm) and ZnS:Mn-Ala ($233{\pm}34$ nm) in water due to the intermolecular attraction between the capping amino acids molecules. Finally, the cytotoxic effects of ZnS:Mn-Gly and ZnS:Mn-Ala nanocrsystals over the growth of wild type E. coli were investigated. As a result, no toxicity was shown for the ZnS:Mn-Gly nanocrystal in the colloidal concentration region from 1 ${\mu}g/mL$ to 1000 ${\mu}g/mL$, while ZnS:Mn-Ala showed significant toxicity at 100 ${\mu}g/mL$.

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Development of Grinding/Polishing Process for Microstructure Observation of Copper melted Beads (구리 용융흔 미세조직 관측을 위한 연마/미세연마 프로세스 개발)

  • Park, Jin-Young;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.108-116
    • /
    • 2018
  • A melted bead microstructure can be divided into a deformed and undeformed layer. Measurement errors occur in the presence of a deformed layer, which should be removed through grinding/polishing whilst preserving the original structure. This paper proposes a grinding/polishing process to analyze the microstructure of copper melted beads. For the removal of the deformed layer, the correlation between the abrasive type/size, the polishing time and polishing rate was analyzed and the thickness of the deformed layer was less than $1{\mu}m$. The results suggest a new grinding/polishing procedure: silicon carbide abrasive $15{\mu}m$ (SiC P1200) 2 min, and $10{\mu}m$ (SiC P2400) 1 min; and diamond abrasive $6{\mu}m$ 8 min, $3{\mu}m$ 6 min, $1{\mu}m$ 10 min, and $0.25{\mu}m$ 8 min. In addition, a method of increasing the sharpness of the microstructure by chemical polishing with $0.04{\mu}m$ colloidal silica for 3 min at the final stage is also proposed. The overall grinding/polishing time is 38 min, which is shorter than that of the conventional procedure.

Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network (신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가)

  • Donggyu Song;Seheon Ko;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.388-393
    • /
    • 2023
  • The analysis of engineering data using neural network based on supervised learning has been utilized in various engineering fields such as optimization of chemical engineering process, concentration prediction of particulate matter pollution, prediction of thermodynamic phase equilibria, and prediction of physical properties for transport phenomena system. The supervised learning requires training data, and the performance of the supervised learning is affected by the composition and the configurations of the given training data. Among the frequently observed engineering data, the data is given in log-scale such as length of DNA, concentration of analytes, etc. In this study, for widely distributed log-scaled training data of virtual 100×100 images, available loss functions were quantitatively evaluated in terms of (i) confusion matrix, (ii) maximum relative error and (iii) mean relative error. As a result, the loss functions of mean-absolute-percentage-error and mean-squared-logarithmic-error were the optimal functions for the log-scaled training data. Furthermore, we figured out that uniformly selected training data lead to the best prediction performance. The optimal loss functions and method for how to compose training data studied in this work would be applied to engineering problems such as evaluating DNA length, analyzing biomolecules, predicting concentration of colloidal suspension.

Evaluation of Physical Properties of Liposome Essences as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type (맞춤형화장품 베이스로서 리포좀 에센스의 물성 평가 및 피부타입에 따른 만족도 평가)

  • An, Hyung Guen;Hyeon, Tong-Il;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Customized cosmetics are continuously mentioned as a trend in the cosmetics industry to respond to the recent rapid changes in the social environment and pursue individuality and diversity. Accordingly, four types of liposome essence corresponding to skin types were prepared by varying the ratio of liposome formulation and essence formulation as a customized cosmetic base that can be easily mixed and applied at the workplace. The volatilization residues of four types of liposome essence were measured and the nanoparticle size, polydispersity index, zeta potential and viscosity according to time for 90 d were measured, and Turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. In addition, a simple usability evaluation was performed for four types of liposome essence corresponding to the skin type. As a result, the amount of volatile residue in the four types of liposome essence was increased in dry products rather than oily ones, and the particle size showed a tendency to increase with time in the range of 165 to 175 nm, increasing up to 31.5%, and the polydispersity index was 0.23 to 0.26. There was little change with time, and the zeta potential was -74 to -72 mV, showing a slight decrease with time, but there was little change to the extent of a maximum decrease of 14.0%. Viscosity showed a decreasing trend with time in the range of 2,580 ~ 3,290 cps, showing a maximum decrease of 17.5%. In the turbiscan measurement, all of the turbiscan stability index, a measure of stability, were less than 1.0, indicating dispersion stability. In the overall simple usability satisfaction evaluation for skin types (6 points), products for oily skin (5.33 ± 0.75 points) > products for medium dry skin (5.13 ± 0.95 points) > products for dry skin (5.03 ± 0.96 points) > products for oily skin (4.80 ± 1.04 points) points) were evaluated in order. The four types of liposome essence corresponding to skin types with different ratios of liposome formulation and essence formulation were physically stable, and the possibility of application as a customized cosmetic base according to skin type was confirmed.