• Title/Summary/Keyword: Colloidal Particles

Search Result 278, Processing Time 0.025 seconds

Hydrogen evolution reaction (HER) properties of pulse laser irradiated platinum catalysts with tailored size

  • Jeonghun Lee;Hyunsung Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.331-337
    • /
    • 2024
  • Platinum has been utilized as an excellent electrocatalyst with low overpotential for the hydrogen evolution reaction (HER) in water splitting, despite of its high cost. In this study, platinum particles were produced using pulsed laser technology as a HER catalyst for water splitting. The colloidal platinum particles were synthesized by nanosecond pulsed laser irradiation (PLI) without reducing agents, not traditional polyol processes including reducing agents. The crystal structure, shape and size of the synthesized platinum particles as a function of pulsed laser irradiation time were investigated by XRD and SEM analysis. Additionally, the electrochemical properties for the HER in water splitting of the irradiation time-dependent platinum electrocatalysts were studied with the analysis of overpotentials in linear sweep voltammetry and Tafel slope.

Detection of Colloidal Nanoparticles in KURT Groundwater by a Mobile Laser-Induced Breakdown Detection System (이동식 레이저 유도 파열 검출 장치를 이용한 KURT 지하수 내 콜로이드 나노 입자 검출)

  • Jung, Euo-Chang;Cho, Hye-Ryun;Park, Mi-Ri;Baik, Min-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.41-48
    • /
    • 2011
  • A mobile laser-induced breakdown detection (LIBD) system was developed for the field measurement of the size and concentration of aquatic colloidal nanoparticles sampled from Korea Atomic Energy Research Institute Underground Research Tunnel (KURT). The established LIBD apparatus is based on the optical detection of a laser-induced plasma by means of a two-dimensional optical imaging method for determining the size of nanoparticle. Calibration curve for determining the size of nanoparticle was obtained from the polystyrene reference particles of a well-defined size. The first direct application was made at KURT for investigating the particle sizes in groundwater. By comparing the size of particles in groundwater with the sizes of reference particles, the mean particle size of approximately $108{\pm}26$ nm with the concentration lower than 50 ppb was determined.

Evaluating Effects of Membrane Filter Pore Sizes on Determination of Dissolved Concentrations of Major Elements in Groundwater and Surface Water Near Nakdong River (낙동강변 지하수 및 지표수의 주요원소 용존 농도 결정에 대한 막필터 공극 크기의 영향 분석)

  • Kim, Bo-A;Koh, Dong-Chan;Ha, Kyoochul
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.31-40
    • /
    • 2015
  • Various types of inorganic and organic colloids are present in natural water including groundwater. Previous studies showed that Fe, Mn and Al are colloid-forming elements and dissolved concentrations can be erroneous for these elements if water samples are not properly filtered. Dissolved concentrations of elements including Ca, Na, Mg, K, Fe, Mn, Si and Al in groundwater from alluvial and bedrock aquifers, and surface water near Nakdong River were determined to evaluate effects of colloids on dissolved concentrations in natural water samples using various pore sizes of filters. Groundwater is mostly anoxic and have elevated concentrations of Fe and Mn, which provides a unique opportunity to observe the effects of colloids on dissolved concentrations of colloid-forming elements. Membrane filters with four kinds of pore sizes of 1000 nm, 450 nm, 100 nm, and 15 nm were used for filtration of water samples. Concentrations of dissolved concentrations in each filtrate did not show significant differences from 1000 nm to 100 nm. However, concentrations of all elements considered were decreased in the filtrates obtained using 15 nm pore size filters by 10 to 15% compared to those using 450 nm except for bedrock groundwater. Al in surface water showed a distinct linear decrease with the decrease of filter pore sizes. These results showed that 100 nm pore size had little effect to remove colloidal particles in alluvial groundwater and surface water in our study. In contrast, significant concentration decreases in 15 nm pore size filtrates indicate that the presence of 15 to 100 nm colloidal particles may affect determination of dissolved concentrations of elements in natural water.

Convective Deposition of Silica Nano-Colloidal Particles and Preparation of Anti-Reflective Film by Controlling Refractive Index (콜로이드 실리카 나노입자의 부착에 의한 반사방지막 제조 및 굴절율 조절)

  • Hwang Yeon;Prevo Brian;Velev Orlin
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.285-292
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloids. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were convectively stacked to form a film onto the substrate as the water evaporates. As the sliding speed increased, the thickness of the film decreased and the wavelength at the maximum transmittance decreased. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness was measured by proffer and calculated from the wavelength of maximum transmittance and the effective refractive index. The effective refractive index of the film could be controlled by a subtle controlling of the coating speed and by mixing two different sized silica particles. When the 100 nm and 50 m particles were mixed at 4:1-5:1 volume ratio, the maximum transmittance of $95.2\%$ for one-sided coating was obtained. This is the one that has increased by $3.8\%$ compared to bare glass substrate, and shows that $99.0\%$ of transmittance or $1.0\%$ of reflectance can be achieved by the simple process if both sides of the substrate are coated.

Effects of ballasting Agent (Microsand) on Physical Floc Characteristics (세사 투입에 따라 형성된 플럭의 물리적 특성)

  • Ryu, Jae-Na;Lim, Yoon-Dae;Oh, Je-Ill
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.5
    • /
    • pp.485-493
    • /
    • 2010
  • Chemical coagulation destabilizes colloidal particles so that particles grow to larger flocs. Solid particles are then removed by solid-liquid separation after typical precipitation. Rapid precipitation enhances the separation by reducing the precipitation time with larger and denser particles. Conventionally, polyelectolyte compounds (polymers) function as a flocculant aid by introducing a interparticle binding, which increases the particle size and density. And more recent ballasted flocculation adds a ballasting agent (microsand) to form denser particles with its high-density(sp gr=2.65). The current research was to evaluate the manner in which ballasted flocs are formed under different injection timings of microsand and to recognize the effects on floc formation. $FeCl_3$ as a coagulant, anionic polymer for a flocculation aid and microsand were used for the floc formation. Floc size (diameter) was widely ranged with the highest mean value when microsand was injected between $FeCl_3$ and polymer. Mean floc density was larger when the floc formed smaller. Settling velocity increased with larger floc size, whilst not significantly affected by the timing of microsand injection. The additional slow mixing on floc formation increased floc size to some extent.

Synthesis of stable colloidal zirconia sol by adsorption of polyvinyl alcohol (PVA 흡착에 의한 안정한 콜로이드 지르코니아 졸의 합성)

  • Lee, Jong-Kook;Moon, Gi-Dong;Kim, Hwan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.2
    • /
    • pp.165-174
    • /
    • 1995
  • A stable suspension with a colloidal $ZrO_2$ particle was prepared by an adsorption of PV A and investigated to the effects of PV A on the dispersion and particle growth within suspension. With a suspension added the optimum concentration of PYA (about 500 ppm in this study), it was shown the property of a stable sol due to the formation of adsorbed PV A layer on surface and the reduction of an agglomeration among the particles. Most of nucleation in colloidal $ZrO_2$ were occured in the early stage of hydrolysis reaction and the plate-like monoclinic $ZrO_2$ particle were grown with an aging time. The rate of particle growth and yield for a reaction were decreased with an addition of PV A. The compact prepared from well- dispersed suspension by an addition of PV A was contained the homogeneous particle arrangement and pore distribution.

  • PDF

Highly-closed/-Open Porous Ceramics with Micro-Beads by Direct Foaming

  • Jang, Woo Young;Seo, Dong Nam;Park, Jung Gyu;Kim, Hyung Tae;Lee, Sung Min;Kim, Suk Young;Kim, Ik Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.604-609
    • /
    • 2016
  • This study reports on wet-foam stability with respect to porous ceramics from a particle-stabilized colloidal suspension that is achieved through the addition of polymethyl methacrylate (PMMA) using a wet process. To stabilize the wet foam, an initial colloidal suspension of $Al_2O_3$ was partially hydrophobized by the surfactant propyl gallate (2 wt.%) and $SiO_2$ was added as a stabilizer. The influence of the PMMA content on the bubble size, pore size, and pore distribution in terms of the contact angle, surface tension, adsorption free energy, and Laplace pressure are described in this paper. The results show a wet-foam stability of more than 83%, which corresponds to a particle free energy of $2.7{\times}10^{-12}J$ and a pressure difference of 61.1 mPa for colloidal particles with 20 wt.% of PMMA beads. It was possible to control the uniform distribution of the open/closed pores by increasing the PMMA content and by adding thick struts, leading to the achievement of a higher-stability wet foam for use in porous ceramics.

PEALD과 ALD을 이용한 다공성 기판의 증착 특성 비교

  • Gang, Go-Ru;Cha, Deok-Jun;Kim, Jin-Tae;Yun, Ju-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.155.2-155.2
    • /
    • 2014
  • Plasma Enhanced Atomic Layer Deposition(PEALD)와 Atomic Layer Deposition(ALD) Techniques는 '정확한 두께 조절' 및 '우수한 균일도'를 가지는 신뢰할 수 있는 진공 기술이다. 본 연구에서는 다공성 구조를 가지는 기판을 대상으로 PEALD와 ALD Techniques을 이용한 $Al_2O_3$ 형성 공정의 증착 특성을 비교하였다. 각 공정은 공통적으로 Tris-Methyl-Aluminium(TMA)을 첫번째 전구체로 사용하였고 purge gas로는 Nitrogen를 사용하였다. 그리고 두번째 전구체로 PEALD 공정에서는 Oxygen Plasma를 사용하였고 ALD 공정에서는 Water를 사용하였다. 복잡한 다공성 구조를 가지는 기판은 $TiO_2$ Nano-Particle paste과 colloidal Silver paste를 소결시켜 제작하여 사용하였다. 각 공정의 차이점을 비교하기 위해서 배기단에 Capacitor Diaphram Gauge(CDG)와 Residual Gas Analyzer(RGA)를 통해서 압력과 잔류 가스를 모니터하였다. 그리고 각 공정을 통해서 porous한 Nano-Particles Network에 형성된 $Al_2O_3$막의 특성을 비교하기 위해서 FE-SEM과 EDX를 통해서 관찰하였다. 또한 좀 더 자세한 비교 분석을 위해서 $Al_2O_3$ 막이 형성된 porous한 Nano-Particles Networks의 각 각의 particles들을 분산시켜 TEM과 AFM를 통해서 관찰하였다. 나아가 전기적 물성의 차이점을 비교하기 위해서 IV 및 CV를 측정하였다. 위의 일련의 비교 실험을 통해서 'PEALD과 ALD을 이용한 다공성 기판의 증착 특성'에 대하여 고찰하였다.

  • PDF

SiO2/styrene butadiene rubber-coated poly(ethylene terephthalate) nonwoven composite separators for safer lithium-ion batteries

  • Lee, Jung-Ran;Won, Ji-Hye;Lee, Sang-Young
    • Journal of Electrochemical Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.51-56
    • /
    • 2011
  • We develop a new nonwoven composite separator for a safer lithium-ion battery, which is based on coating of silica ($SiO_2$) colloidal particles/styrene-butadiene rubber (SBR) binder to a poly(ethylene terephthalate) (PET) nonwoven support. The $SiO_2$ particles are interconnected by the SBR binder and closely packed in the nonwoven composite separator, which thus allows for the development of unusual porous structure, i.e. highly-connected interstitial voids formed between the $SiO_2$ particles. The PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The $SiO_2$/SBR content in the nonwoven composite separators plays an important role in determining their separator properties. Porous structure, air permeability, and electrolyte wettability of the nonwoven composite separators, in comparison to a commercialized polyethylene (PE) separator, are elucidated as a function of the $SiO_2$/SBR content. Based on this understanding of the nonwoven composite separators, the effect of $SiO_2$/SBR content on the electrochemical performances such as self-discharge, discharge capacity, and discharge C-rate capability of cells assembled with the nonwoven composite separators is investigated.

Eco-Friendly Synthesis of Rod-Like Potassium Hexatitanate Particles (친환경 공정에 의한 봉상형 육티탄산칼륨 입자의 제조)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.13 no.4
    • /
    • pp.183-189
    • /
    • 2017
  • Potassium hexatitanate ($K_2Ti_6O_{13}$) with high thermal insulating capacity, good mechanical properties, and excellent chemical stability are promising functional materials in the field of reinforcing material, heat insulating paints and automotive brake linings. In this study, we successfully synthesized rod-shaped potassium hexatitanate ($K_2Ti_6O_{13}$) by aerosol spray drying and post heat treatment as an eco-friendly process. The $KHCO_3-TiO_2$ porous particles were firstly synthesized from a colloidal mixture of $K_2CO_3$ and $TiO_2$ via aerosol spray drying. Size of $KHCO_3-TiO_2$ porous particles was ranged from $1{\mu}m$ to $5{\mu}m$. The porous particles were then heated to fabricate rod-type $K_2Ti_6O_{13}$. The length and width of rod-type composites were affected by temperature and heating time. The length and width of $K_2Ti_6O_{13}$ were increased by 830 nm and 500 nm, respectively, as the reaction temperature and time increased.