• Title/Summary/Keyword: Colloid Formation and Migration

Search Result 6, Processing Time 0.03 seconds

International Joint Research for the Colloid Formation and Migration in Grimsel Test Site: Current Status and Perspectives

  • Sang-Ho Lee;Jin-Seok Kim;Bong-Ju Kim;Jae-Kwang Lee;Seung Yeop Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.455-468
    • /
    • 2022
  • Colloid Formation and Migration (CFM) project is being carried out within the Grimsel Test Site (GTS) Phase Ⅵ. Since 2008, the Korea Atomic Energy Research Institute (KAERI) has joined CFM to investigate the behavior of colloid-facilitated radionuclide transport in a generic Underground Research Laboratory (URL). The CFM project includes a long-term in-situ test (LIT) and an in-rock bentonite erosion test (i-BET) to assess the in-situ colloid-facilitated radionuclide transport through the bentonite erosion in the natural flow field. In the LIT experiment, radionuclide-containing compacted bentonite was equipped with a triple-packer system and then positioned at the borehole in the shear zone. It was observed that colloid transport was limited owing to the low swelling pressure and low hydraulic conductivity. Therefore, a postmortem analysis is being conducted to estimate the partial migration and diffusion of radionuclides. The i-BET experiment, that focuses more on bentonite erosion, was newly designed to assess colloid formation in another flow field. The i-BET experiment started with the placement of compacted bentonite rings in the double-packer system, and the hydraulic parameters and bentonite erosion have been monitored since December 2018.

Radionuclide Transport Mediated by Pseudo-Colloid in the fractured Rock Media : Model Development

  • Baik, Min-Hoon;Hahn, Phil-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.769-774
    • /
    • 1995
  • In this study, a transport model was developed in order to analyze and predict the transport behaviors of radionuclides mediated by pseudo-colloid in the fractured rock media. It was resulted that the transport of Pu-239 was faster than Ni-63 because pseudo-colloid formation constant of Pu-239 was greater than that of Ni-63. Also, the effect of pseudo-colloid formation on the transport of a radionuclide was shown to be very significant when the apparent pseudo colloid formation constant, $K_{ap}(m^{3}/kg)$, was greater than 100. Thus, it can be concluded that acceleration of radionuclide migration may be occurred because the pseudo-colloid formation of radionuclides increases the amount of mobile components in the solution and consequently decreases the amount of radionuclides adsorbed on the stationary solid medium.

  • PDF

A Theoretical Study on the Radionuclide Transport Mediated by Pseudo-Colloid in the Fractured Rock Medium (균열 암반 매질에서 의사콜로이드에 의해 매개된 방사성 핵종의 이동에 대한 이론적 연구)

  • Baik, M.H.;Hahn, P.S.;Park, H.H.
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.532-543
    • /
    • 1995
  • In this study, a transport model was developed in order to analyze and predict the transport behaviors of radionuclides mediated by pseudo-colloid in the fractured rock media. The effect of pseudo-colloid formation on the transport of a radionuclide was shown to be tory significant when an ap-parent pseudo-colloid formation constant, $A_{ap}$ (㎥/kg), os greater than 100. It was resulted from example calculations that the transport of Pu-239 was faster than Ni-63 because pseudo-colloid formation constant of Pu-239 was venter than that of Ni-63. Thus, it can be concluded that acceleration of radionuclide migration may be occurred because the pseudo-colloid formation of radionuclides increases the amount of mobile components in the solution and consequently decreases the amount of radionuclides adsorbed on the stationary solid medium.

  • PDF

REVIEW AND COMPILATION OF DATA ON RADIONUCLIDE MIGRATION AND RETARDATION FOR THE PERFORMANCE ASSESSMENT OF A HLW REPOSITORY IN KOREA

  • Baik, Min-Hoon;Lee, Seung-Yeop;Lee, Jae-Kwang;Kim, Seung-Soo;Park, Chung-Kyun;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.593-606
    • /
    • 2008
  • In this study, data on radionuclide migration and retardation processes in the engineered and natural barriers of High-Level Radioactive Waste (HLW) repository have been reviewed and compiled for use in the performance assessment of a HLW disposal system in Korea. The status of the database on radionuclide migration and retardation that is being developed in Korea is investigated and summarized in this study. The solubilities of major actinides such as D, Th, Am, Np, and Pu both in Korean bentonite porewater and in deep Korean groundwater are calculated by using the geochemical code PHREEQC (Ver. 2.0) based on the KAERI-TDB(Korea Atomic Energy Research Institute-Thermochemical Database), which is under development. Databases for the diffusion coefficients ($D^b_e$ values) and distribution coefficients ($K^b_d$ values) of some radionuclides in the compacted Korean Ca-bentonite are developed based upon domestic experimental results. Databases for the rock matrix diffusion coefficients ($D^r_e$ values) and distribution coefficients ($K^r_d$ values) of some radionuclides for Korean granite rock and deep groundwater are also developed based upon domestic experimental results. Finally, data related to colloids such as the characteristics of natural groundwater colloids and the pseudo-colloid formation constants ($K_{pc}$ values) are provided for the consideration of colloid effects in the performance assessment.

Radionuclide Peritoneal Scintigraphy in Patients with Ascites and Pleural Effusion (방사성핵종 복막촬영술을 이용한 복수에 동반된 수흉의 감별 진단)

  • Lee, Jae-Tae;Lee, Kyu-Bo;Whang, Kee-Suk;Kim, Gwang-Weon;Chung, Byung-Cheon;Cho, Dong-Kyu;Chung, Joon-Mo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.2
    • /
    • pp.279-285
    • /
    • 1990
  • Simultaneous presence of ascites and pleural effusion has been documented in patients with cirrhosis of the liver, renal disease, Meigs' syndrome and in patients undergoing peritoneal dialysis. Mechanisms proposed in the formation of pleural effusion in most of the above diseases are lymphatic drainage and diaphragmatic defect. But sometimes, hepatic hydrothoraxes in the absence of clinical ascites and pleural effusion secondary to pulmonary or cardiac disease are noted. It is not always possible to differentiate between pleural effusion caused by transdiaphragmatic migration of ascites and by other causes based soly on biochemical analysis. Authors performed radionuclide scintigraphy after intraperitoneal administration of $^{99m}Tc-labeled$ colloid in 23 patients with both ascites and pleural effusion in order to discriminate causative mechanisms responsible for pleural effusion. Scintigraphy demonstrated the transdiaphragmatic flow of fluid from the peritoneum to pleural cavities in 13 patients correctly. In contrast, in 5 patients with pleural effusion secondary to pulmonary, pleural and cardiac diseases, radiotracers fail to traverse the diaphragm and localize in the pleural space. Ascites draining to mediastinal lymph nodes and blocked passage of lymphatic drainage were also clarified, additionaly. Conclusively, radionuclide peritoneal scintigraphy is an accurate, rapid and easy diagnostic tool in patients with both ascites and pleural effusion. It enables the causes of pleural effusion to be elucidated, as well as providing valuable information required when determining the appropriate therapy.

  • PDF

Geochemical Modeling on Behaviors of Radionuclides (U, Pu, Pd) in Deep Groundwater Environments of South Korea (한국 심부 지하수 환경에서의 방사성 핵종(우라늄, 플루토늄, 팔라듐)의 지화학적 거동 모델링)

  • Jaehoon Choi;SunJu Park;Hyunsoo Seo;Hyun Tai Ahn;Jeong-Hwan Lee;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.847-870
    • /
    • 2023
  • The safe disposal of high-level radioactive waste requires accurate predictions of the long-term geochemical behavior of radionuclides. To achieve this, the present study was conducted to model geochemical behaviors of uranium (U), plutonium (Pu), and palladium (Pd) under different hydrogeochemical conditions that represent deep groundwater in Korea. Geochemical modeling was performed for five types of South Korean deep groundwater environment: high-TDS saline groundwater (G1), low-pH CO2-rich groundwater (G2), high-pH alkaline groundwater (G3), sulfate-rich groundwater (G4), and dilute (fresh) groundwater (G5). Under the pH and Eh (redox potential) ranges of 3 to 12 and ±0.2 V, respectively, the solubility and speciation of U, Pu, and Pd in deep groundwater were predicted. The result reveals that U(IV) exhibits high solubility within the neutral to alkaline pH range, even in reducing environment with Eh down to -0.2 V. Such high solubility of U is primarily attributed to the formation of Ca-U-CO3 complexes, which is important in both G2 located along fault zones and G3 occurring in granitic bedrocks. On the other hand, the solubility of Pu is found to be highly dependent on pH, with the lowest solubility in neutral to alkaline conditions. The predominant species are Pu(IV) and Pu(III) and their removal is predicted to occur by sorption. Considering the migration by colloids, however, the role of colloid formation and migration are expected to promote the Pu mobility, especially in deep groundwater of G3 and G5 which have low ionic strengths. Palladium (Pd) exhibits the low solubility due to the precipitation as sulfides in reducing conditions. In oxidizing condition, anionic complexes such as Pd(OH)3-, PdCl3(OH)2-, PdCl42-, and Pd(CO3)22- would be removed by sorption onto metal (hydro)oxides. This study will improve the understanding of the fate and transport of radionuclides in deep groundwater conditions of South Korea and therefore contributes to develop strategies for safe high-level radioactive waste disposal.