• Title/Summary/Keyword: Collision-avoidance radar

Search Result 56, Processing Time 0.031 seconds

Width Estimation of Stationary Objects using Radar Image for Autonomous Driving of Unmanned Ground Vehicles (무인차량 자율주행을 위한 레이다 영상의 정지물체 너비추정 기법)

  • Kim, Seongjoon;Yang, Dongwon;Kim, Sujin;Jung, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.711-720
    • /
    • 2015
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance have been reported. Since several pixels per an object may be generated in a close-range radar application, a width of an object can be estimated automatically by various signal processing techniques. In this paper, we tried to attempt to develop an algorithm to estimate obstacle width using Radar images. The proposed method consists of 5 steps - 1) background clutter reduction, 2) local peak pixel detection, 3) region growing, 4) contour extraction and 5)width calculation. For the performance validation of our method, we performed the test width estimation using a real data of two cars acquired by commercial radar system - I200 manufactured by Navtech. As a result, we verified that the proposed method can estimate the widths of targets.

Design of Linear Recursive Target State Estimator for Collision Avoidance System (차량 충돌 방지 시스템을 위한 선형 순환 표적 추정기 설계)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1740-1741
    • /
    • 2011
  • This paper proposes a new linear recursive target state estimator for automotive collision warning system. The target motion is modeled in Cartesian coordinate system while the radar measurements such as range, line-of-sight angle and range rate are obtained in polar coordinate system. To solve the problem by nonlinear relation between these two coordinate system, a practical linear filter design scheme employing the predicted line-of-sight Cartesian coordinate system (PLCCS) is proposed. Especially, PLCCS can effectively incorporate range rate measurements into target tracking system. It is known that the utilization of range rate measurements enables the improvement of target tracking performance. Moreover, PLCCS based target tracking system is implemented by linear recursive filter structure and hence is more suitable scheme for the development of reliable collision warning system. The performance of the proposed method is demonstrated by computer simulations.

  • PDF

Korean National AIS Project

  • Kim, Se-Won;Park, Jin-Soo;Hugh, Ihl
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.06a
    • /
    • pp.57-81
    • /
    • 2000
  • Universal AIS technology is effective and could enhance navigational safety -The AIS provides and improved method of vessel traffic surveillance -Complement to radar in collision avoidance -Invaluable in Search And Rescue operations -Reduce voice communications -Effective Fleet management

  • PDF

Developments of Signal processing Parts of Vehicle Collision Avoidance System using FMCW Radar (FMCW 레이다를 이용한 차량 충돌 방지 시스템의 신호처리부 설계 및 구현)

  • 정진현;오우진
    • Proceedings of the IEEK Conference
    • /
    • 2001.06d
    • /
    • pp.163-166
    • /
    • 2001
  • 본 논문에서는 ITS(Intelligent Transportation System) 기술중의 하나인 차량 충돌 방지 시스템의 신호처리부를 설계 구현하였다. 제안된 시스템은 FMCW (Frequency Modulated Continuous Wave)방식의 770Hz 밀리미터파 레이더를 기준으로 파라미터 값을 설계하여 거리와 속도를 실시간 검출하도록 구현되었다. 제안된 시스템은 TI사의 TMS320C31-40 DSP 와 AT89C52 Bbit 마이크로프로세서로 구현되어 10Hz 이상의 갱신율, 0.2m의 거리 분해능 및 2knvh의 속도 분해능을 제공하고 있다. 실험 환경으로 주파수 발생기(Function Generator)에서 비트주파수(Beat Frequency)를 생성하여 동작을 확인하였다.

  • PDF

Adaptive CFAR implementation of UWB radar for collision avoidance in swarm drones of time-varying velocities (군집 비행 드론의 충돌 방지를 위한 UWB 레이다의 속도 감응형 CFAR 최적화 연구)

  • Lee, Sae-Mi;Moon, Min-Jeong;Chun, Hyung-Il;Lee, Woo-Kyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.456-463
    • /
    • 2021
  • In this paper, Ultra Wide-Band(UWB) radar sensor is employed to detect flying drones and avoid collision in dense clutter environments. UWB signal is preferred when high resolution range measurement is required for moving targets. However, the time varying motion of flying drones may increase clutter noises in return signals and deteriorates the target detection performance, which lead to the performance degradation of anti-collision radars. We adopt a dynamic clutter suppression algorithm to estimate the time-varying distances to the moving drones with enhanced accuracy. A modified Constant False Alarm Rate(CFAR) is developed using an adaptive filter algorithm to suppress clutter while the false detection performance is well maintained. For this purpose, a velocity dependent CFAR algorithm is implemented to eliminate the clutter noise against dynamic target motions. Experiments are performed against flying drones having arbitrary trajectories to verify the performance improvement.

STEREO VISION-BASED FORWARD OBSTACLE DETECTION

  • Jung, H.G.;Lee, Y.H.;Kim, B.J.;Yoon, P.J.;Kim, J.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.493-504
    • /
    • 2007
  • This paper proposes a stereo vision-based forward obstacle detection and distance measurement method. In general, stereo vision-based obstacle detection methods in automotive applications can be classified into two categories: IPM (Inverse Perspective Mapping)-based and disparity histogram-based. The existing disparity histogram-based method was developed for stop-and-go applications. The proposed method extends the scope of the disparity histogram-based method to highway applications by 1) replacing the fixed rectangular ROI (Region Of Interest) with the traveling lane-based ROI, and 2) replacing the peak detection with a constant threshold with peak detection using the threshold-line and peakness evaluation. In order to increase the true positive rate while decreasing the false positive rate, multiple candidate peaks were generated and then verified by the edge feature correlation method. By testing the proposed method with images captured on the highway, it was shown that the proposed method was able to overcome problems in previous implementations while being applied successfully to highway collision warning/avoidance conditions, In addition, comparisons with laser radar showed that vision sensors with a wider FOV (Field Of View) provided faster responses to cutting-in vehicles. Finally, we integrated the proposed method into a longitudinal collision avoidance system. Experimental results showed that activated braking by risk assessment using the state of the ego-vehicle and measuring the distance to upcoming obstacles could successfully prevent collisions.

Range-Doppler Clustering of Radar Data for Detecting Moving Objects (이동물체 탐지를 위한 레이다 데이터의 거리-도플러 클러스터링 기법)

  • Kim, Seongjoon;Yang, Dongwon;Jung, Younghun;Kim, Sujin;Yoon, Joohong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.810-820
    • /
    • 2014
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance are reported. In near field, several hits per an object are generated after signal processing of Radar data. Hence, clustering is an essential technique to estimate their shapes and positions precisely. This paper proposes a method of grouping hits in range-doppler domains into clusters which represent each object, according to the pre-defined rules. The rules are based on the perceptual cues to separate hits by object. The morphological connectedness between hits and the characteristics of SNR distribution of hits are adopted as the perceptual cues for clustering. In various simulations for the performance assessment, the proposed method yielded more effective performance than other techniques.

Suppressio of mutual interference among vehicular radars by ON-OFF control of pulses (다중차량의 자동 주행 시의 레이터 상호간섭 억제)

  • 최병철;김용철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.62-70
    • /
    • 2000
  • Intelligent vehicles are equipped with radar sensors for collision avoidance. We present a method of suppressing mutual interference among pulse-type radars, where all the radars are standardized. We developed a method of separating the true self-reflection from the false one by controlling the pulse emission of a radar in anorhogonal ON, OFF pattern. Interference signal identified in OFF-intervals is recorded to indicate the positions of the expected ghosts in ON-intervals. PFA and PM are derived for a radar system with I-Q demodulation scheme, where Gaussian noise alone is Rayleigh-distributed and Gaussian noise plus reflected radar pulse are Rician-distributed. The value of the threshold adaptively updated in order to prevent the deterioration of PM. In the experimental result, PFA decreases by an order of 10,000, when compared with the conventional M of N majority voting method.

  • PDF

FCWA(Forward Collision Warning and Avoidance) algorithm using MMW Radar Sensor (레이더 센서를 이용한 종방향 충돌방지 및 회피 알고리즘)

  • 이태훈;유기정;박문수;홍석교
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.389-389
    • /
    • 2000
  • The number of automobiles is rapidly increasing , as are the importance of the car as a way of transportation, and the variety of its uses. In these surroundings, a safety, one of the primary factors which must be considered in automotive engineering, demands a system that aids the driver's vision and perception. In this point of view, development of the more promoted system that complement the existing passive method which relies on just man's ability is the important issue of the advanced traffic system including ITS. In this paper, we provide an algorithm and implementation of a control system that warns the collisions ahead and avoids this situation, using informations about the host-car, target-car and surroundings. The warning is made by an algorithm that decides the degree of safely. With this degree of safely, the controller automatically controls a vehicle's speed to a proper level.

  • PDF

Development of EM Wave Absorber for Millimeter Wave Radar (밀리미터 레이더용 전파흡수체 개발)

  • Choi Chang-Mook;Kim Dong-Il;Je Seung-Hun;Choi Yun-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.223-227
    • /
    • 2006
  • The millimeter-wave radar is positioned as a key, basic ITS technology supporting safe driving, because millimeter wave allows radar to see small distant objects. This system is considered the collision-avoidance radar available in some cars. This system employs poised radar operating within the frequency range $76\sim77GHz$. Radar systems create two major problems(false images and system-to-system interference). False echoes cause driving hazards. These problems can be eliminated through the use of EM wave absorber. Therefore, we designed and fabricated EM wave absorber using permalloy. It has the thickness of 1.4 mm with composition of permalloy:CPE=70:30 wt% and absorption ability higher than 18 dB in the frequency range $76\sim77GHz$.

  • PDF