• 제목/요약/키워드: Collision induced dissociation (CID)

검색결과 23건 처리시간 0.017초

액체 크로카토그래피-대기압화학이온화법 질량분석기를 이용한 nitrophenol류의 분석 (Analysis of Nitrophenols Using Liquid Chromatography/Atmospheric Pressure Chemical Ionization Mass Spectrometry)

  • 홍종기;유종신;김강진
    • 분석과학
    • /
    • 제10권1호
    • /
    • pp.9-17
    • /
    • 1997
  • nitrophenol류는 미국 환경청에서 주요 priority 오염물질로 규정하고 있다. 물 중에 존재하는 nitrophenol류의 혼합물을 분석하기 위해 역상 액체크로마토그래피법에 대기압 화학이온화법을 연결한 질량분석기를 이용하였다. 추가적으로, 선택이온 검색법과 cone 전압차분해법(cone voltage fragmentation)을 이용하여 nitrophenol류의 확인에 있어서 감도와 선택성을 높였다. nitrophenol의 분해 형태는 충돌유발분해법인 MS/MS 기법으로 얻어진 분해 형태와 비교하였다.

  • PDF

Determination of isoquinoline alkaloids by UPLC-ESI-Q-TOF MS: Application to Chelidonium majus L.

  • Jeong, Won Tae;Lim, Heung Bin
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.379-389
    • /
    • 2017
  • In this study, we set up an analytical method that can be used for rapid and accurate determination of representative isoquinoline alkaloids in medicinal plants using UPLC-ESI-Q-TOF MS (ultra pressure liquid chromatography-electrospray ionization-quadrupole-time-of-flight mass spectrometry). The compounds were eluted on a C18 column with 0.1 % formic acid and acetonitrile, and separated with good resolution within 13 min. Each of the separated components was characterized by precursor ions (generated by ESI-Q-TOF) and fragment ions (produced by collision-induced dissociation, CID), which were used as a reliable database. We also performed method validation: analytes showed excellent linearity ($R^2$, 0.9971-0.9996), LOD (5-25 ng/mL), LOQ (17-82 ng/mL), accuracy (91.6-97.4 %) as well as intra- and inter-day precisions (RSD, 1.8-3.2 %). In the analysis of Chelidonium majus L., magnoflorine, coptisine, sanguinarine, berberine and palmatine were detected by matching retention times and characteristic fragment ion patterns of reference standards. We also confirmed that, among the quantified components, coptisine was present in the highest quantity. Furthermore, alkaloid profiling was carried out by analyzing the fragment ion patterns corresponding to peaks of unknown components. In this manner, protopine, chelidonine, stylopine, dihydroberberine, canadine, and nitidine were tentatively identified. We also proposed the molecular structure of the fragment ions that appear in the mass spectrum. Therefore, we concluded that our suggested method for the determination of major isoquinoline alkaloids by UPLC-Q-TOF can be useful not only for quality control, but also for rapid and accurate investigation of phytochemical constituents of medicinal plants.

Liquid Chromatography Quadrupole Time-Of-Flight Tandem Mass Spectrometry for Selective Determination of Usnic Acid and Application in Pharmacokinetic Study

  • Fang, Minfeng;Wang, Hui;Wu, Yang;Wang, Qilin;Zhao, Xinfeng;Zheng, Xiaohui;Wang, Shixiang;Zhao, Guifang
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권6호
    • /
    • pp.1684-1688
    • /
    • 2013
  • A rapid and sensitive method for determining usnic acid of Lethariella cladonioides in rat was established using high performance liquid chromatography (HPLC) quadrupole time-of-flight (QTOF) tandem mass (MS/MS). Rat plasma was pretreated by mixture of acetonitrile and chloroform to precipitate plasma proteins. Chromatographic separation was achieved on a column ($50{\times}2.1$ mm, $5{\mu}m$) with a mobile phase consisting of water (containing $5{\times}10^{-3}$ M ammonium formate, pH was adjusted to 3.0 with formic acid) and acetonitrile (20:80, v/v) at a flow rate of 0.3 mL/min. A tandem mass spectrometric detection with an electrospray ionization (ESI) interface was conducted via collision induced dissociation (CID) under negative ionization mode. The MS/MS transitions monitored were m/z 343.0448 ${\rightarrow}$ m/z 313.2017 for usnic acid and m/z 153.1024 ${\rightarrow}$ m/z 136.2136 for protocatechuic acid (internal standard). The linear range was calculated to be 2.0-160.0 ng/mL with a detection limit of 3.0 pg/mL. The inter- and intra-day accuracy and precision were within ${\pm}7.0%$. Pharmacokinetic study showed that the apartment of usnic acid in vivo confirmed to be a two compartment open model. The method was fully valid and will probably be an alternative for pharmacokinetic study of usnic acid.